已知p:,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的充分而不必要條件,求實數(shù)m的取值范圍.
【答案】分析:利用二次不等式與絕對值不等式,分別求解p,q,推出¬p,¬q.利用¬p是¬q的充分而不必要條件,列出關系式,求實數(shù)m的取值范圍.
解答:解:由x2-2x+1-m2≤0(m>0)得  1-m≤x≤1+m
故¬q:A={x|x<1-m或x>1+m,m>0}
由  ,得-2≤x≤10
故¬p:B={x|x<-2或x>10}
∵¬p是¬q的充分而不必要條件
解得 0<m≤3
∴實數(shù)m的取值范圍  0<m≤3
點評:本題考查絕對值不等式,命題的否定,必要條件、充分條件與充要條件的判斷,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年江西省南昌二中高二第二次月考文科數(shù)學試卷(帶解析) 題型:解答題

(本小題12分)已知p:,q:x2-2x+1-m2≤0(m>0),且┐p是┐q的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高二第二次月考理科數(shù)學試卷(解析版) 題型:解答題

(本小題12分) 已知p:,q:x2-2x+1-m2≤0(m>0),且┐p是┐q的必要而不充分條件,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高二第二次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題12分)已知p:,q:x2-2x+1-m2≤0(m>0),且┐p是┐q的必要而不充分條件,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:解答題

已知p :,q:x2-2x+1-m2≤0(m>0),若的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案