精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線過原點且傾斜角為.以坐標原點為極點,軸正半軸為極軸建立坐標系,曲線的極坐標方程為.在平面直角坐標系中,曲線與曲線關于直線對稱.

(Ⅰ)求曲線的極坐標方程;

(Ⅱ)若直線過原點且傾斜角為,設直線與曲線相交于,兩點,直線與曲線相交于兩點,當變化時,求面積的最大值.

【答案】(Ⅰ) (Ⅱ)

【解析】

(Ⅰ)法一:將化為直角坐標方程,根據對稱關系用上的點表示出上點的坐標,代入方程得到的直角坐標方程,再化為極坐標方程;法二:將化為極坐標方程,根據對稱關系將上的點用上的點坐標表示出來,代入極坐標方程即可得到結果;(Ⅱ)利用的極坐標方程與的極坐標方程經坐標用表示,將所求面積表示為與有關的三角函數解析式,通過三角函數值域求解方法求出所求最值.

(Ⅰ)法一:由題可知,的直角坐標方程為:

設曲線上任意一點關于直線對稱點為,

所以

又因為,即,

所以曲線的極坐標方程為:

法二:由題可知,的極坐標方程為: ,

設曲線上一點關于 的對稱點為

所以

又因為,即,

所以曲線的極坐標方程為:

(Ⅱ)直線的極坐標方程為:,直線的極坐標方程為:

,

所以解得,解得

因為:,所以

時,,取得最大值為:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】三國時期吳國數學家趙爽所注《周牌算經》中給出了勾股定理的絕妙證明.右面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實黃實,利用(股勾)朱實黃實弦實,化簡,得勾,設勾股中勾股比為,若向弦圖內隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘顆數大約為( )(參考數據,

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】黃河被稱為我國的母親河,它的得名據說來自于河水的顏色,黃河因攜帶大量泥沙所以河水呈現黃色, 黃河的水源來自青海高原,上游的1000公里的河水是非常清澈的.只是中游流經黃土高原,又有太多攜帶有大量泥沙的河流匯入才造成黃河的河水逐漸變得渾濁.在劉家峽水庫附近,清澈的黃河和攜帶大量泥沙的洮河匯合,在兩條河流的交匯處,水的顏色一清一濁,互不交融,涇渭分明,形成了一條奇特的水中分界線,設黃河和洮河在汛期的水流量均為2000,黃河水的含沙量為,洮河水的含沙量為,假設從交匯處開始沿岸設有若干個觀測點,兩股河水在流經相鄰的觀測點的過程中,其混合效果相當于兩股河水在1秒內交換的水量,即從洮河流入黃河的水混合后,又從黃河流入的水到洮河再混合.

1)求經過第二個觀測點時,兩股河水的含沙量;

2)從第幾個觀測點開始,兩股河水的含沙量之差小于?(不考慮泥沙沉淀)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數,是自然對數的底數,)存在唯一的零點,則實數的取值范圍為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在長方體ABCDA1B1C1D1,若AB=BC,EF分別是AB1,BC1的中點,則下列結論中不成立的是(

A.EFBB1垂直B.EF⊥平面BDD1B1

C.EFC1D所成的角為45°D.EF∥平面A1B1C1D1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】AB是圓O的直徑,點C是圓O上異于AB的動點,過動點C的直線VC垂直于圓O所在平面,D,E分別是VA,VC的中點.

1)判斷直線DE與平面VBC的位置關系,并說明理由;

2)當△VAB為邊長為的正三角形時,求四面體VDEB的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】AB是圓O的直徑,點C是圓O上異于AB的動點,過動點C的直線VC垂直于圓O所在平面,D,E分別是VAVC的中點.

1)判斷直線DE與平面VBC的位置關系,并說明理由;

2)當△VAB為邊長為的正三角形時,求四面體VDEB的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,是兩條不同的直線,,是三個不同的平面,給出下列四個命題:

①若,,則

②若,,則

③若,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

同步練習冊答案