設(shè)雙曲線與橢圓
x2
27
+
y2
36
=1
有共同的焦點,且與橢圓相交,在第一象限的交點A的縱坐標為4,求此雙曲線的方程.
設(shè)雙曲線方程為
y2
a2
-
x2
b2
=1(a>0,b>0)

由已知橢圓的兩個焦點F1(0,-3),F(xiàn)2(0,3),
又雙曲線與橢圓交點A的縱坐標為4,∴A(
15
,4)
,
42
a2
-
(
15
)
2
b2
=1
a2+b2=9

解得
a2=4
b2=5
,
故雙曲線方程為
y2
4
-
x2
5
=1
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

同步練習冊答案