6.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}}\right.$,則z=x-2y的最大值為( 。
A.2B.3C.4D.5

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可.

解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分):
平移直線y=$\frac{1}{2}x-\frac{z}{2}$,
由圖象可知當(dāng)直線y=$\frac{1}{2}x-\frac{z}{2}$,過點C(3,0)時,直線y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,此時z最大,
代入目標(biāo)函數(shù)z=x-2y,得z=3
∴目標(biāo)函數(shù)z=x-2y的最大值是3.
故選:B.

點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在長方體ABCD-A1B1C1D1中,AB=BC=EC=$\frac{1}{2}A{A}_{1}$.求證:
(1)AC1∥平面BDE;
(2)A1E⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$y=sin(ωx+\frac{π}{6})(ω>0)$的圖象與x軸正半軸交點的橫坐標(biāo)構(gòu)成一個公差為$\frac{π}{2}$的等差數(shù)列,若要得到函數(shù)g(x)=sinωx的圖象,只要將f(x)的圖象( 。﹤單位.
A.向左平移$\frac{π}{12}$B.向右平移$\frac{π}{12}$C.向左平移$\frac{π}{6}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕成本為50元,每個蛋糕的售價為100元,如果當(dāng)天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.
(1)若該蛋糕店某一天制作生日蛋糕17個,設(shè)當(dāng)天的需求量為n(n∈N),則當(dāng)天的利潤y(單位:元)是多少?
(2)若蛋糕店一天制作17個生日蛋糕.
①求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n的函數(shù)解析式;
②求當(dāng)天的利潤不低于600圓的概率.
(3)若蛋糕店計劃一天制作16個或17個生日蛋糕,請你以蛋糕店一天利潤的平均值作為決策依據(jù),應(yīng)該制作16個還是17個生日蛋糕?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}滿足:${log_3}a{\;}_n+1={log_3}{a_{n+1}},({n∈{N^+}})$,且a2+a4+a6=9,則${log_{\frac{1}{3}}}({a_5}+{a_7}+{a_9})$的值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=1-2x的值域為(  )
A.[1,+∞)B.(1,+∞)C.(-∞,1]D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,則實數(shù)m的取值范圍為.( 。
A.[-2,1)B.[-2,1]C.[-2,-1)D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y-29=0相切.
(1)求圓的方程;
(2)設(shè)直線kx-y+5=0與圓相交于A,B兩點,求實數(shù)k的取值范圍;
(3)在(2)的條件下,是否存在實數(shù)k,使得過點P(2,-4)的直線l垂直平分弦AB?若存在,求出實數(shù)k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若復(fù)數(shù)(2-i)(a+2i)是純虛數(shù),則實數(shù)a=-1.

查看答案和解析>>

同步練習(xí)冊答案