已知數(shù)列{an}為等差數(shù)列,且有a3-a6+a10-a12+a15=20,a7=14.
(Ⅰ)求數(shù)列{an}的通項an及其前n項和Sn;
(Ⅱ)記數(shù)列{}的前n項和為Tn,試用數(shù)學(xué)歸納法證明對任意n∈N*,都有
【答案】分析:(Ⅰ)因為3+15=6+12,根據(jù)等差數(shù)列的性質(zhì)可知a3+a15=a6+a12,即可求出a10的值,再根據(jù)a7=14,利用待定系數(shù)法求出數(shù)列的首項與公差,根據(jù)首項與公差寫出通項公式及前n項和的公式即可;
(Ⅱ)先根據(jù)Sn的通項公式表示出,(1)當(dāng)n=1時,把n=1代入求值不等式成立;(2)再假設(shè)n=k時關(guān)系成立,利用通分和約分變形可得n=k+1時關(guān)系也成立,綜合(1)和(2),得到對于任意n∈N*時都成立.
解答:解:(Ⅰ)因為{an}為等差數(shù)列,且3+15=6+12,所以a3+a15=a6+a12,得a10=20,
由a10=a1+9d及a7=a1+6d聯(lián)立解得a1=2,d=2,
因此得an=2n,Sn=n2+n;
(Ⅱ)證明:
(1)當(dāng)n=1時,,關(guān)系成立;
(2)假設(shè)當(dāng)n=k時,關(guān)系成立,即,

=
=,即當(dāng)n=k+1時關(guān)系也成立.
根據(jù)(1)和(2)知,關(guān)系式對任意n∈N*都成立.
點評:此題是一道綜合題,要求學(xué)生掌握等差數(shù)列的性質(zhì),會利用待定系數(shù)法求等差數(shù)列的通項公式及前n項的和公式,同時要求學(xué)生掌握數(shù)學(xué)歸納法在證明題中的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項和,則S2009=( 。
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項和,則S2013等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0,且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項和,則S2011等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出“等和數(shù)列”的定義:從第二項開始,每一項與前一項的和都等于一個常數(shù),這樣的數(shù)列叫做“等和數(shù)列”,這個常數(shù)叫做“公和”.已知數(shù)列{an}為等和數(shù)列,公和為
1
2
,且a2=1,則a2009=(  )
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012--2013學(xué)年河南省高二上學(xué)期第一次考試數(shù)學(xué)試卷(解析版) 題型:選擇題

.定義:在數(shù)列{an}中,an>0且an≠1,若為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習(xí)冊答案