曲線的方程為y=x2+1,那么求此曲線在點(diǎn)P(1,2)處的切線的斜率,以及切線的方程.

解:k=

∴切線的斜率為2,

切線的方程為y-2=2(x-1),即y=2x.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足方程x2+y2+4y-96=0,有下列結(jié)論:
①x+y的最小值為-10
2
-2
;
②對(duì)任意實(shí)數(shù)m,方程(m-2)x-(2m+1)y+16m+8=0(m∈R)與題中方程必有兩組不同的實(shí)數(shù)解;
③過(guò)點(diǎn)M(0,18)向題中方程所表示曲線作切線,切點(diǎn)分別為A,B,則直線AB的方程為y=3;
④若x,y∈N*,則xy的值為36或32.
以上結(jié)論正確的有
 
(用序號(hào)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃岡模擬)如圖所示,圖中曲線方程為y=x2-1,借助定積分表達(dá)圍成的封閉圖形的面積( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)函數(shù)y=f(x),x∈[-5,5]的圖象如圖所示,該曲線在原點(diǎn)處的切線的方程為y=x,且導(dǎo)函數(shù)f′(x)是減函數(shù).給出下列四個(gè)命題:
①A,B是該圖象上的任意兩點(diǎn),那么直線AB的斜率kAB∈(0,1);
②點(diǎn)P是該圖象在第一象限內(nèi)的部分上的點(diǎn),那么直線OP的斜率kOP∈(0,1);
③對(duì)于?x1,x2∈[-5,5],f(x1)+f(x2)≤2f(
x1+x2
2
)恒成立;
④對(duì)于?x∈[-5,5],f(x)≤x.
其中所有真命題的序號(hào)是( 。
A、①②③B、②③④
C、②④D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:選修設(shè)計(jì)同步數(shù)學(xué)人教A(2-2) 人教版 題型:044

曲線的方程為yx2+1,那么求此曲線在點(diǎn)P(1,2)處的切線的斜率,以及切線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案