在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2
2
sin(θ-
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
分析:先把極坐標(biāo)方程和參數(shù)方程化為普通方程,求出圓心到直線的距離,利用弦長公式求弦長.
解答:解:將方程ρ=2
2
sin(θ-
π
4
)
,
x=1+
4
5
t
y=-1-
3
5
t
,
分別化為普通方程:x2+y2+2x-2y=0,3x+4y+1=0,
由曲線C的圓心為C(-1,1),半徑為
2
.  
所以,圓心C到直線l的距離為
|-3+4+1|
9+16
=
2
5

故所求弦長為 2
2-(
2
5
)
2
=
2
46
5
點(diǎn)評:本題考查把極坐標(biāo)方程和參數(shù)方程化為普通方程的方法,點(diǎn)到直線的距離公式及弦長公式的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過點(diǎn)M且不過圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=[
 
1
1
],并且矩陣M對應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2
2
sin(θ-
π
4
),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsin(θ-
π
6
)=3,點(diǎn)A(2,
π
3
)到曲線C上點(diǎn)的距離的最小值A(chǔ)P0=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線C極坐標(biāo)方程為ρ=2
2
sin(θ-
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)).
求:(1)曲線C和直線l的普通方程;
(2)求直線l被曲線C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知直線l過點(diǎn)A(2,0),傾斜角為
π2

(1)寫出直線l的參數(shù)方程;
(2)若有一極坐標(biāo)系分別以直角坐標(biāo)系的原點(diǎn)和x軸非負(fù)半軸為原點(diǎn)和極軸,并且兩坐標(biāo)系的單位長度相等,在極坐標(biāo)系中有曲線C:ρ2cos2θ=1,求直線l截曲線C所得的弦BC的長度.

查看答案和解析>>

同步練習(xí)冊答案