直線是函數(shù)的切線,則的值為(   )
A.B.C.D.
C
本題考查曲線的切線與函數(shù)的導(dǎo)數(shù)的關(guān)系.
〖思路分析〗  先描述切點(diǎn)的坐標(biāo),得切線的斜率為,再寫出切線的方程,然后建立關(guān)于的方程組,從而解決問題。
〖解答〗  由,設(shè)此切線的切點(diǎn)為,則其斜率為;切線的方程為,即
又直線是函數(shù)的切線,則有,解得
,所以選擇答案
〖評(píng)析〗本題中切點(diǎn)未知,所以要首先設(shè)切點(diǎn)為,這樣便于利用導(dǎo)數(shù)表示切線的斜率,從而寫出切線的方程,進(jìn)而建立方程組并解之,這是解決這一類問題的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)
(Ⅰ)若函數(shù)f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍;
(Ⅱ)若函數(shù)f(x)的圖象在x = 1處的切線的斜率為0,且,已
知a1 = 4,求證:an³ 2n + 2;
(Ⅲ)在(Ⅱ)的條件下,試比較的大小,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的遞增區(qū)間是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)f(x)=,x∈[0,2].
(1)求f(x)的值域;
(2)設(shè)a≠0,函數(shù)g(x)=ax3-a2x,x∈[0,2].若對(duì)任意x1∈[0,2],總存在x2∈[0,2],使f(x1)-g(x2)=0.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值,且過原點(diǎn),曲線在P(-1,2)處的切線的斜率是-3 
(1)求的解析式;
(2)若在區(qū)間上是增函數(shù),數(shù)的取值范圍;
(3)若對(duì)任意,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)頂點(diǎn)在下,底面在上的圓錐形容器,其底面半徑等于圓錐的高,若以
的速度向該容器注水,則水深10時(shí)水面上升的速度為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的圖象在處的切線方程是,則=    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的單調(diào)遞增區(qū)間是                       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=單調(diào)遞增區(qū)間為    

查看答案和解析>>

同步練習(xí)冊(cè)答案