【題目】如圖,矩形ABCD的兩條對角線相交于點(diǎn)M(2,0),AB邊所在直線的方程為x-3y-6=0,點(diǎn)T(-1,1)在AD邊所在的直線上.
(1)求AD邊所在直線的方程;
(2)求矩形ABCD外接圓的方程.
【答案】
(1)解:因?yàn)锳B邊所在直線的方程為x-3y-6=0,且AD與AB垂直,所以直線AD的斜率為-3.又因?yàn)辄c(diǎn)T(-1,1)在直線AD上,所以AD邊所在直線的方程為y-1=-3(x+1),即3x+y+2=0
(2)解:由 可得點(diǎn)A的坐標(biāo)為(0,-2).
因?yàn)榫匦蜛BCD兩條對角線的交點(diǎn)為M(2,0).
所以M為矩形ABCD外接圓的圓心.又|AM|= ,
從而矩形ABCD外接圓的方程為(x-2)2+y2=8
【解析】本題考查直線方程的求法,考查圓的方程的求法,考查向量數(shù)量積的求法,解題時要認(rèn)真審題,注意直線性質(zhì)的靈活運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個圓錐形的空杯子上放著一個直徑為8cm的半球形的冰淇淋,請你設(shè)計一種這樣的圓錐形杯子(杯口直徑等于半球形的冰淇淋的直徑,杯子壁厚忽略不計),使冰淇淋融化后不會溢出杯子,怎樣設(shè)計最省材料?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知(2x﹣ )5(Ⅰ)求展開式中含 項(xiàng)的系數(shù)
(Ⅱ)設(shè)(2x﹣ )5的展開式中前三項(xiàng)的二項(xiàng)式系數(shù)之和為M,(1+ax)6的展開式中各項(xiàng)系數(shù)之和為N,若4M=N,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l1過點(diǎn)A(0,1),l2過點(diǎn)B(5,0),如果l1∥l2且l1與l2的距離為5,求l1 , l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知N為自然數(shù)集,集合P={1,4,7,10,13},Q={2,4,6,8,10},則P∩ 等于( )
A.{1,7,13}
B.{4,10}
C.{1,7}
D.{0,1,3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若曲線y=f(x)在P(1,f(1))處的切線平行于直線y=﹣x+1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a>0,且對任意x∈(0,2e]時,f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F(xiàn)分別為BC,CD的中點(diǎn),以A為圓心,AD為半徑的圓交AB于G,點(diǎn)P在 上運(yùn)動(如圖).若 =λ +μ ,其中λ,μ∈R,則6λ+μ的取值范圍是( )
A.[1, ]
B.[ ,2 ]
C.[2,2 ]
D.[1,2 ]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com