如圖,是棱長(zhǎng)為1的正方體,四棱錐中,平面,

(Ⅰ)求證:

(Ⅱ)求直線與平面所成角的正切值。

 

【答案】

(1)利用線面平行的判定定理來(lái)證明。(2)

【解析】

試題分析:(Ⅰ)取的中點(diǎn),連結(jié),

,,平面

,

,   

,

∴四邊形為平行四邊形,

,          

平面,平面,∴平面. 

(Ⅱ)∵

∴直線與平面所成角等于直線與平面所成角.

正方體中,顯然平面,

就是直線與平面所成角.        

中,,,

∴直線與平面所成角的正切值為.    

考點(diǎn):本試題考查了線面平行的證明以及線面角的求解。

點(diǎn)評(píng):解決立體幾何中的平行和垂直的證明一般都要根據(jù)所學(xué)的線面和面面的平行和垂直的判定定理和性質(zhì)定理來(lái)得到。同時(shí)能利用平面的垂線來(lái)得到斜線在平面內(nèi)的射影,進(jìn)而得到線面角,結(jié)合三角形來(lái)求解,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,棱長(zhǎng)為1的正四面體ABCD中,E、F分別是棱AD、CD的中點(diǎn),O是點(diǎn)A在平面BCD內(nèi)的射影.
(Ⅰ)求直線EF與直線BC所成角的大小;
(Ⅱ)求點(diǎn)O到平面ACD的距離;
(Ⅲ)求二面角E-BE-F的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,棱長(zhǎng)為1的正四面體ABCD中,E、F分別是棱AD、CD的中點(diǎn),O是點(diǎn)A在平面BCD內(nèi)的射影.
(Ⅰ)求直線EF與直線BC所成角的大小;
(Ⅱ)求點(diǎn)O到平面ACD的距離;
(Ⅲ)求二面角E-BE-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,棱長(zhǎng)為1的正四面體ABCD中,E、F分別是棱AD、CD的中點(diǎn),O是點(diǎn)A在平面BCD內(nèi)的射影.

(1)求直線EF與直線BC所成角的大小;

(2)求點(diǎn)O到平面ACD的距離;

(3)(理)求二面角ABEF的大小.

(文)求二面角CBFE的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,棱長(zhǎng)為1的正四面體ABCD中,E、F分別是棱AD、CD的中點(diǎn),O是點(diǎn)A在平面BCD內(nèi)的射影.
(Ⅰ)求直線EF與直線BC所成角的大;
(Ⅱ)求點(diǎn)O到平面ACD的距離;
(Ⅲ)求二面角E-BE-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高二下學(xué)期數(shù)學(xué)單元測(cè)試1-理科 題型:解答題

 如圖,把邊長(zhǎng)為a的正六邊形紙板剪去相同的六個(gè)角,做成一個(gè)底面為正六邊形的無(wú)蓋六棱柱盒子,設(shè)高為h所做成的盒子體積V(不計(jì)接縫).

(1)寫(xiě)出體積V與高h(yuǎn)的函數(shù)關(guān)系式;

(2)當(dāng)為多少時(shí),體積V最大,最大值是多少?

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案