如圖,是正方形ABCD的內(nèi)接三角形,若,則點(diǎn)C分線段BE所成的比為(     ).

A.                               B.

C.                              D.

 

【答案】

B

【解析】

試題分析:設(shè),

,

,,,

解得,所以

故選B。

考點(diǎn):平面向量的應(yīng)用

點(diǎn)評(píng):簡(jiǎn)單題,平面向量在平面幾何中的應(yīng)用,一般借助于圖形,發(fā)現(xiàn)向量之間的關(guān)系,利用向量的線性運(yùn)算,加以解答。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)如圖1,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中點(diǎn).求證:AE⊥PD.
(2)如圖2,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4.求證:平面BDE⊥平面BEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
,B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求證:AB1∥平面 A1C1C;
(Ⅱ)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求證:A1B1⊥平面AA1C; 
(II)求證:AB1∥平面 A1C1C;
(II)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅甘谷一中宏志班選拔考試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖所示,△ABC的頂點(diǎn)是正方形網(wǎng)格的格點(diǎn),則sinA的值為 (   )

A.       B.      C.     D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案