與向量數(shù)學(xué)公式數(shù)學(xué)公式垂直的向量可能為


  1. A.
    (3,-4)
  2. B.
    (-4,3)
  3. C.
    (4,3)
  4. D.
    (4,-3)
C
分析:分別求出向量,和A,B,C,D四個(gè)備選向量的乘積,如果乘積等于0,則這兩個(gè)向量垂直,否則不垂直.
解答:對(duì)于A:∵,•(3,-4)=-=-5,∴A不成立;
對(duì)于B:∵•(-4,3)=,∴B不成立;
對(duì)于C:∵•(4,3)=,∴C成立;
對(duì)于D:∵,•(4,-3)=,∴D不成立;
故選C.
點(diǎn)評(píng):本題考查向量的數(shù)量積和兩個(gè)平面垂直的條件的靈活運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
=(sinx,
3
2
)
,
b
=(cosx,-1).
(Ⅰ)
a
b
可否垂直?說(shuō)明理由;
(Ⅱ)設(shè)f(x)=(
a
-
b
)•
a

(i)y=f(x)在x∈[-
π
2
,0
]上的值域;
(ii)說(shuō)明由y=sin2x的圖象經(jīng)哪些變換可得y=f(x)圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三第五次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,的交點(diǎn),,是線段的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求證:平面;

(Ⅲ)求二面角的大。

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面,平面,∴平面,,又,∴平面. 可得證明

(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,,

為平面的法向量.∴利用法向量的夾角公式,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn)、

,又點(diǎn),∴

,且不共線,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,,即,,

,∴平面.   ………8分

(Ⅲ)∵,,∴平面,

為面的法向量.∵,

為平面的法向量.∴,

的夾角為,即二面角的大小為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0103 期中題 題型:解答題

已知橢圓長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之差是2-2,且右焦點(diǎn)F到此橢圓一個(gè)短軸端點(diǎn)的距離為,點(diǎn)C(m,0)是線段OF上的一個(gè)動(dòng)點(diǎn)(O為坐標(biāo)原點(diǎn))。
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過(guò)點(diǎn)F且與x軸不垂直的直線與橢圓交于A、B兩點(diǎn),使得,并說(shuō)明理由。
【注:當(dāng)直線BA的斜率存在且為k時(shí),的方向向量可表示為(1,k)】

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知向量
a
=(4,3),
b
=(-1,2)
,若向量
a
+k
b
a
-
b
垂直,則k的值為( 。
A.
23
3
B.7 下列人類(lèi)所需的營(yíng)養(yǎng)物質(zhì)中,既不參與構(gòu)成人體細(xì)胞,也不為人體提供能量的是,答案:0,選項(xiàng):維生素,選項(xiàng):水,選項(xiàng):無(wú)機(jī)鹽,... - 初中生物 - 精英家教網(wǎng) .artpreview dt{background:#fff;color:#000}#cont{background:#fff url(http://img.jyeoo.net/images/body_bg.jpg) repeat-x;margin:0} function initJavaScriptCallback() { QuesCart.init("bio", true); } var imageRootUrl="http://img.jyeoo.net/",wwwRootUrl="http://www.jyeoo.com/",blogRootUrl="http://blog.jyeoo.com/",spaceRootUrl="http://space.jyeoo.com/",loginUrl="http://www.jyeoo.com/",logoutUrl="http://www.jyeoo.com/account/logoff",scriptsUrl="http://img.jyeoo.net/scripts/",isMobile=false;var mustyleAttr={color:"#000000",fontsize:"13px",fontfamily:"arial",displaystyle:"true"};document.domain="jyeoo.com";$.ajaxSetup({cache:true});C.-
11
5
D.-
23
3
考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系.專(zhuān)題:計(jì)算題.分析:根據(jù)向量坐標(biāo)運(yùn)算的公式,結(jié)合
a
=(4,3),
b
=(-1,2)
,可得向量
a
+k
b
a
-
b
的坐標(biāo).再根據(jù)向量
a
+k
b
a
-
b
互相垂直,得到它們的數(shù)量積等于0,利用兩個(gè)向量數(shù)量積的坐標(biāo)表達(dá)式列方程,解之可得k的值.∵
a
=(4,3),
b
=(-1,2)
a
+k
b
=(4-k,3+2k),
a
-
b
=(5,1)∵向量
a
+k
b
a
-
initJavaScript(); 充值|設(shè)為首頁(yè)|免費(fèi)注冊(cè)|登錄
輸入公式
在線問(wèn)答在線組卷在線訓(xùn)練 精英家教網(wǎng) 更多試題 》試題下列人類(lèi)所需的營(yíng)養(yǎng)物質(zhì)中,既不參與構(gòu)成人體細(xì)胞,也不為人體提供能量的是( 。
A.維生素B.水C.無(wú)機(jī)鹽D.脂肪
考點(diǎn):人體需要的主要營(yíng)養(yǎng)物質(zhì).分析:食物中含有六大類(lèi)營(yíng)養(yǎng)物質(zhì):蛋白質(zhì)、糖類(lèi)、脂肪、維生素、水和無(wú)機(jī)鹽,每一類(lèi)營(yíng)養(yǎng)物質(zhì)都是人體所必需的.食物所含的六類(lèi)營(yíng)養(yǎng)物質(zhì)中,能為人體提供能量的是糖類(lèi)、脂肪和蛋白質(zhì),同時(shí)這三類(lèi)物質(zhì)也是組織細(xì)胞的組成成分,水、無(wú)機(jī)鹽和維生素不能為人體提供能量.其中糖類(lèi)是最主要的供能物質(zhì),人體進(jìn)行各項(xiàng)生命活動(dòng)所消耗的能量主要來(lái)自于糖類(lèi)的氧化分解,約占人體能量供應(yīng)量的70%.脂肪也是重要的供能物質(zhì),但是人體內(nèi)的大部分脂肪作為備用能源貯存在皮下等處,屬于貯備能源物質(zhì).蛋白質(zhì)也能為生命活動(dòng)提供一部分能量,但蛋白質(zhì)主要是構(gòu)成組織細(xì)胞的基本物質(zhì),是人體生長(zhǎng)發(fā)育、組織更新的重要原料,也是生命活動(dòng)的調(diào)節(jié)等的物質(zhì)基礎(chǔ).維生素屬于有機(jī)物,但它既不能為人體提供能量,也不參與人體組織的構(gòu)成,但它對(duì)人體的生命活動(dòng)具有重要的調(diào)節(jié)作用.水和無(wú)機(jī)鹽屬于無(wú)機(jī)物.其中水既是人體重要的構(gòu)成成分,也是人體各項(xiàng)生命活動(dòng)進(jìn)行的載體.無(wú)機(jī)鹽也參與構(gòu)成人體細(xì)胞.
故選:A點(diǎn)評(píng):解答此題的關(guān)鍵是熟練掌握人體需要的營(yíng)養(yǎng)物質(zhì)及其作用.答題:xushifeng老師 隱藏解析在線訓(xùn)練

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之差是,且右焦點(diǎn)F到此橢圓一個(gè)短軸端點(diǎn)的距離為,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(為坐標(biāo)原點(diǎn)).

(I)求橢圓的方程;

(Ⅱ)是否存在過(guò)點(diǎn)且與軸不垂直的直線與橢圓交于、兩點(diǎn),

使得,并說(shuō)明理由. 

【注:當(dāng)直線BA的斜率存在且為時(shí),的方向向量可表示為

查看答案和解析>>

同步練習(xí)冊(cè)答案