【題目】已知ABCD﹣A1B1C1D1為正方體,① ;② ;③向量 與向量 的夾角是60°;④正方體ABCD﹣A1B1C1D1的體積為 .其中正確的命題是(寫(xiě)出所有正確命題編號(hào))
【答案】①②
【解析】解:①由向量的加法得到: ,∵ ,∴ ,所以①正確;
②∵ ,AB1⊥A1C,∴ ,故②正確;
③∵△ACD1是等邊三角形,∴ ,又A1B∥D1C,∴異面直線AD1與A1B所成的夾角為60°,但是向量 與向量 的夾角是120°,
故③不正確;
④∵AB⊥AA1 , ∴ ,故 =0,因此④不正確.
所以答案是①②.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意x∈R,函數(shù)y=(k2﹣k﹣2)x2﹣(k﹣2)x﹣1的圖象始終在x軸下方,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點(diǎn).
(1)求證:平面PDE⊥平面PAC;
(2)求直線PC與平面PDE所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知離心率為 的橢圓C: + =1(a>b>0)過(guò)點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線l交橢圓C于不同的兩點(diǎn)A、B.
(1)求橢圓C的方程.
(2)證明:直線MA、MB與x軸圍成一個(gè)等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,設(shè)動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離與到定直線l:x=﹣1的距離相等,記P的軌跡為Γ.又直線AB的一個(gè)方向向量 且過(guò)點(diǎn)(1,0),AB與Γ交于A、B兩點(diǎn),求|AB|的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是(﹣∞,+∞)上的奇函數(shù),且f(x+2)=﹣f(x),當(dāng)0≤x≤1時(shí),f(x)=x.
(1)求f(π)的值;
(2)求﹣1≤x≤3時(shí),f(x)的解析式;
(3)當(dāng)﹣4≤x≤4時(shí),求f(x)=m(m<0)的所有實(shí)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.
(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com