已知函數(shù),(其中m為常數(shù)).
(1) 試討論在區(qū)間上的單調(diào)性;
(2) 令函數(shù).當(dāng)時,曲線上總存在相異兩點,使得過、點處的切線互相平行,求的取值范圍.
(1) ,
 
(2)的取值范圍為.

試題分析:(1) 求函數(shù)的導(dǎo)數(shù),對討論用導(dǎo)函數(shù)的正負判斷單調(diào)性;(2)在導(dǎo)數(shù)相等得,由不等式性質(zhì)可得恒成立,所以,恒成立,令,求其最小值,即的最大值.
試題解析:(1)                 1分


 
      5分
(2)由題意,可得,且
          7分
,由不等式性質(zhì)可得恒成立,又
  恒成立
,
恒成立
上單調(diào)遞增,∴             11分
                                    12分
從而“恒成立”等價于“
的取值范圍為                          13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù).
(1)若,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象經(jīng)過兩點,如圖所示,且函數(shù)的值域為.過該函數(shù)圖象上的動點軸的垂線,垂足為,連接.

(I)求函數(shù)的解析式;
(Ⅱ)記的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),()在處取得最小值.
(Ⅰ)求的值;
(Ⅱ)若處的切線方程為,求證:當(dāng)時,曲線不可能在直線的下方;
(Ⅲ)若,()且,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù) 
(1)當(dāng)時,求曲線處的切線方程;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,求函數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若,證明:時,成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)(其中).
(1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(2) 當(dāng)時,函數(shù)上有且只有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)。
(Ⅰ)若是增函數(shù),求b的取值范圍;
(Ⅱ)若時取得極值,且時,恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定義在上的函數(shù)是最小正周期為的偶函數(shù),的導(dǎo)函數(shù).當(dāng)時,;當(dāng)時,.則函數(shù)上的零點個數(shù)為          .

查看答案和解析>>

同步練習(xí)冊答案