已知圓x2+y2=4上一定點A(2,0),B(1,1)為圓內(nèi)一點,P,Q為圓上的動點。
(1)求線段AP中點的軌跡方程;
(2)若∠PBQ=90°,求PQ中點的軌跡方程。
解:(1)設(shè)AP中點為M(x,y),由中點坐標公式可知,P點坐標為(2x-2,2y)
∵P點在圓x2+y2=4上,
∴(2x-2)2+(2y)2=4
故線段AP中點的軌跡方程為(x-1)2+y2=1。
(2)設(shè)PQ的中點為N(x,y),
在Rt△PBQ中,|PN|=|BN|,
設(shè)O為坐標原點,連結(jié)ON,則ON⊥PQ,
所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
所以x2+y2+(x-1)2+(y-1)2=4
故PQ中點N的軌跡方程為x2+y2-x-y-1=0。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

4、已知圓x2+y2=4,過A(4,0)作圓的割線ABC,則弦BC中點的軌跡方程是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知圓x2+y2=4上恰有兩個點到直線4x-3y+c=0的距離為1,則實數(shù)c的取值范圍是
(-15,-5)∪(5,15)
(-15,-5)∪(5,15)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2=4內(nèi)一定點M(0,1),經(jīng)M且斜率存在的直線交圓于A(x1,y1)、B(x2,y2)兩點,過點A、B分別作圓的切線l1,l2.設(shè)切線l1,l2交于點Q.
(1)設(shè)點P(x0,y0)是圓上的點,求證:過P的圓的切線方程是
x
 
0
x+y0y=4

(2)求證Q在一定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知圓x2+y2=4上有且僅有三個點到直線12x-5y+c=0的距離為1,則實數(shù)c的值是
±13
±13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知圓x2+y2=4及點P(1,1),則過點P的直線中,被圓截得的弦長最短時的直線的方程是
x+y-2=0
x+y-2=0

查看答案和解析>>

同步練習冊答案