對(duì)1個(gè)單位質(zhì)量的含污物體進(jìn)行清洗, 清洗前其清潔度(含污物體的清潔度定義為:
為, 要求清洗完后的清潔度為. 有兩種方案可供選擇, 方案甲: 一次清洗; 方案乙: 分兩次清洗. 該物體初次清洗后受殘留水等因素影響, 其質(zhì)量變?yōu)?sub>. 設(shè)用單位質(zhì)量的水初次清洗后的清潔度是, 用單位質(zhì)量的水第二次清洗后的清潔度是,
其中是該物體初次清洗后的清潔度.
(Ⅰ)分別求出方案甲以及時(shí)方案乙的用水量, 并比較哪一種方案用水量較少;
(Ⅱ)若采用方案乙, 當(dāng)為某固定值時(shí), 如何安排初次與第二次清洗的用水量, 使總用水量最小? 并討論取不同數(shù)值時(shí)對(duì)最少總用水量多少的影響.
解:(Ⅰ)設(shè)方案甲與方案乙的用水量分別為與,由題設(shè)有,解得.
由得方案乙初次用水量為3, 第二次用水量滿足方程:
解得,故.即兩種方案的用水量分別為與.
因?yàn)楫?dāng)時(shí),即,故方案乙的用水量較少.
(II)設(shè)初次與第二次清洗的用水量分別為與,類似(I)得
①
于是
當(dāng)為定值時(shí), ,
當(dāng)且僅當(dāng)時(shí)等號(hào)成立.此時(shí)
(不和題意,舍去)或
將代入①式得
故時(shí)總用水量最少, 此時(shí)第一次與第二次用水量分別為
, 最少總用水量是.
當(dāng)時(shí),,故是增函數(shù)(也可以用二次函數(shù)的單調(diào)性判斷).這說(shuō)明,隨著的值的最少總用水量, 最少總用水量最少總用水量.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
污物質(zhì)量 |
物體質(zhì)量(含污物) |
x+0.8 |
x+1 |
y+ac |
y+a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(06年湖南卷理)(14分)
對(duì)1個(gè)單位質(zhì)量的含污物體進(jìn)行清洗, 清洗前其清潔度(含污物體的清潔度定義為:
為, 要求清洗完后的清潔度為. 有兩種方案可供選擇, 方案甲: 一次清洗; 方案乙: 分兩次清洗. 該物體初次清洗后受殘留水等因素影響, 其質(zhì)量變?yōu)?IMG height=21 src='http://thumb.zyjl.cn/pic1/img/20090331/20090331203646004.gif' width=79>. 設(shè)用單位質(zhì)量的水初次清洗后的清潔度是, 用單位質(zhì)量的水第二次清洗后的清潔度是,
其中是該物體初次清洗后的清潔度.
(Ⅰ)分別求出方案甲以及時(shí)方案乙的用水量, 并比較哪一種方案用水量較少;
(Ⅱ)若采用方案乙, 當(dāng)為某固定值時(shí), 如何安排初次與第二次清洗的用水量, 使總用水量最小? 并討論取不同數(shù)值時(shí)對(duì)最少總用水量多少的影響.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)分別求出方案甲以及c=0.95時(shí)方案乙的用水量,并比較哪一種方案用水量較少.
(2)若采用方案乙,當(dāng)a為某定值時(shí),如何安排初次與第二次清洗的用水量,使總用水量最少?并討論a取不同數(shù)值時(shí)對(duì)最少總用水量的影響.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)1個(gè)單位質(zhì)量的含污物體進(jìn)行清洗,清洗前其清潔度(含污物體的清潔度定義為:)為0.8,要求洗完后的清潔度是0.99.有兩種方案可供選擇,方案甲:一次清洗;方案乙:兩次清洗.該物體初次清洗后受殘留水等因素影響,其質(zhì)量變?yōu)?img width=13 height=15 src="http://thumb.zyjl.cn/pic1/1899/sx/197/315197.gif">(1≤a≤3).設(shè)用單位質(zhì)量的水初次清洗后的清潔度是(),用質(zhì)量的水第二次清洗后的清潔度是,其中是該物體初次清洗后的清潔度.
(Ⅰ)分別求出方案甲以及時(shí)方案乙的用水量,并比較哪一種方案用水量較少;
(Ⅱ)若采用方案乙,當(dāng)為某定值時(shí),如何安排初次與第二次清洗的用水量,使總用水量最少?并討論取不同數(shù)值時(shí)對(duì)最少總用水量多少的影響.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)分別求出方案甲以及c=0.95時(shí)方案乙的用水量,并比較哪一種方案用水量較少;
(2)若采用方案乙,當(dāng)a為某定值時(shí),如何安排初次與第二次清洗的用水量,使總用水量最少?并討論a取不同數(shù)值時(shí)對(duì)最少總用水量多少的影響.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com