圓錐的底面半徑為1,側(cè)面展開圖是一個半圓,則此圓錐的表面積為(  )
A、6π
B、5π
C、3π
D、
3
3
π
考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
專題:計算題,空間位置關系與距離
分析:利用圓錐側(cè)面展開圖的弧長=底面周長,可求得圓錐的底面周長以及圓錐母線長,那么圓錐的側(cè)面積=底面周長×母線長÷2,即可求出圓錐的表面積.
解答: 解:底面半徑為1,則底面周長=2π,側(cè)面展開圖是半圓,則母線長=2π×2÷2π=2,
∴圓錐的側(cè)面積=
1
2
×2π×2=2π.
∵圓錐的底面積為π,
∴圓錐的表面積為2π+π=3π
故選C.
點評:本題利用了圓的周長公式和扇形面積公式求解.牢記圓錐與扇形各個元素之間的關系是解決此類題目的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是首項為1,公比為q(q≠-1)的等比數(shù)列,若{
1
an+an+1
}是等差數(shù)列,則(
1
a2
+
1
a3
)+(
1
a3
+
1
a4
)+…+(
1
a2013
+
1
a2014
)=( 。
A、2012B、2013
C、4024D、4026

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的不等式ax2-(a+1)x+1<0(a∈R)的解集為(
1
a
,1),則a的取值范圍為( 。
A、a<0,或a>1B、a>1
C、0<a<1D、a<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=max{x2-x,1-x2}的單調(diào)增區(qū)間是( 。
A、[-
1
2
,0],[1,+∞)
B、(-∞,-
1
2
],[0,1]
C、[-
1
2
,1]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線y=
ex-1,x≤1
1
1-x
,x>1
,與直線y=kx-1有兩個不同的交點,則實數(shù)k的取值范圍是( 。
A、(3-2
2
,3+2
2
B、(0,3-2
2
C、(-∞,0)∪(0,3-2
2
D、(-∞,3-2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(Ⅰ)求二面角M-AC-B的余弦值;
(Ⅱ)求點C到面MAB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較.在試制某種牙膏新品種時,需要選用兩種不同的添加劑.現(xiàn)有芳香度分別為0,1,2,3,4,5的六種添加劑可供選用.根據(jù)試驗設計原理,通常首先要隨機選取兩種不同的添加劑進行搭配試驗.(寫解題過程)
(1)求所選用的兩種不同的添加劑的芳香度之和等于4的概率;
(2)求所選用的兩種不同的添加劑的芳香度之和不小于3的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三角形△ABC與△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,點P,Q分別在線段BD,CD上,沿直線PQ將△PQD向上翻折,使D與A重合.
(Ⅰ)求證:AB⊥CQ;
(Ⅱ)求證P為BD的中點;
(Ⅲ)求直線AP與平面ABC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{Cn}滿足Cn=n•2n-2+2n,求數(shù)列{Cn}的前n項和Sn

查看答案和解析>>

同步練習冊答案