如圖,在長方體中,,且

(I)求證:對任意,總有

(II)若,求二面角的余弦值;

(III)是否存在,使得在平面上的射影平分?若存在, 求出的值, 若不存在,說明理由.

 

【答案】

(I)見解析(II)(III)存在

【解析】

試題分析:(I)以為坐標(biāo)原點(diǎn),分別以所在直線為軸,軸,軸,建立空間直角坐標(biāo)系,設(shè),則,

,從而,

,即.                                              ……4分

(II)由(I)及得,,

設(shè)平面的法向量為,則,

從而可取平面的法向量為,

又取平面的法向量為,且設(shè)二面角

所以                                                  ……8分

(III) 假設(shè)存在實(shí)數(shù)滿足條件,由題結(jié)合圖形,只需滿足分別與所成的角相等,

,即

解得

所以存在滿足題意得實(shí)數(shù),

使得在平面上的射影平分.                                     ……12分

考點(diǎn):本小題主要考查長方體中的線線垂直的證明、二面角的求法及綜合應(yīng)用問題,考查學(xué)生的空間想象能力和利用空間向量解決立體幾何問題的能力,考查學(xué)生的空間想象能力和運(yùn)算求解能力以及分析問題解決問題的能力.

點(diǎn)評:立體幾何問題可以轉(zhuǎn)化為用空間向量來解決,可以省去作二面角、線面角等步驟之間求解,但是求解時(shí)一定要注意運(yùn)算的準(zhǔn)確性.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體中,AB=AD=2
3
,CC1=
2
,則二面角C1-BD-C的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年惠州一中四模理) 如圖,在長方體中,,點(diǎn)E在棱上移動(dòng)。

(Ⅰ)證明:;

(Ⅱ)當(dāng)E為的中點(diǎn)時(shí),求點(diǎn)E到面的距離;

(Ⅲ)等于何值時(shí),二面角 的大小為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)如圖,在長方體中,,,點(diǎn)在棱上移動(dòng)。

(1)證明:;

(2)等于何值時(shí),二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體中,點(diǎn)在棱的延長線上,

(Ⅰ) 求證://平面 ;(Ⅱ) 求證:平面平面;

(Ⅲ)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在長方體中,,與平面所成角的正弦值為 (  )

A.             B.            C.            D.

 

查看答案和解析>>

同步練習(xí)冊答案