如圖,四邊形ABCD為矩形,SA⊥平面ABCD,E、F分別是SC、SD的中點,SA=AD=2,
(I)求證:EF∥平面SAB;
(Ⅱ)求證.SD⊥平面AEF;
(Ⅲ)求直線BF與平面SAD所成角的大。

【答案】分析:(Ⅰ)利用三角形中位線的性質(zhì)證明EF∥CD,再證明EF∥AB,利用線面平行的判定,即可證明EF∥平面SAB;
(Ⅱ)利用線面垂直的判定,先證明AB⊥平面SAD,再證明SD⊥平面AEF;
(Ⅲ)先說明∠AFB是直線BF與平面SAD所成的角,再在直角三角形AFB中求直線BF與平面SAD所成角的大。
解答:(Ⅰ)證明:∵E、F分別為SC、SD的中點,
∴EF是△SCD的邊CD的中位線
∴EF∥CD
∵四邊形ABCD為矩形
∴CD∥AB,∴EF∥AB
∵AB?平面SAB,EF?平面SAB
∴EF∥平面SAB
(Ⅱ)證明:∵SA=AD,F(xiàn)為SD的中點,
∴SD⊥AF
∵SA⊥平面ABCD,AB?平面ABCD,
∴AB⊥SA
∵AB⊥AD,SA,AD是平面SAD內(nèi)的兩條相交直線
∴AB⊥平面SAD
∵SD?平面SAD,∴SD⊥AB
∵EF∥AB
∴SD⊥EF
∵AF、EF是平面AEF內(nèi)的兩條相交直線
∴SD⊥平面AEF
(Ⅲ)解:由(Ⅱ)AB⊥平面SAD,∴AF是BF在平面SAD上的射影
∴∠AFB是直線BF與平面SAD所成的角
在直角三角形AFB中,
∴∠AFB=60°
點評:本題考查線面平行、線面垂直的判定方法,考查線面角,考查學生分析解決問題的能力,掌握線面平行、線面垂直的判定方法是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD與A′ABB′都是邊長為a的正方形,點E是A′A的中點,A′A⊥平面ABCD.
(1) 求證:A′C∥平面BDE;
(2) 求證:平面A′AC⊥平面BDE
(3) 求平面BDE與平面ABCD所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)證明PQ⊥平面DCQ;
(Ⅱ)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E為BC的中點.
(1)求點C到面PDE的距離;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD內(nèi)接于⊙O,如果它的一個外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步練習冊答案