如圖,已知在空間四邊形ABCD中,AB=AC=DB=DC,E為BC的中點.
(Ⅰ)求證:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求幾何體ABCD的體積;
(Ⅲ)在(Ⅱ)的條件下,若G為△ABD的重心,試問在線段BC上是否存在點F,使GF∥平面ADE?若存在,請指出點F在BC上的位置,若不存在,請說明理由.

解:(Ⅰ)∵AB=AC,E為BC中點,∴AE⊥BC,---(1分)
同理DE⊥BC,
又∵AE∩DE=E,AE、DE?平面ADE
∴BC⊥平面ADE,----(3分)
∵BC?平面ABC
∴平面ADE⊥平面ABC----(5分)
(Ⅱ)∵AB=5,∴AB=AC=DB=DC=5
∵BC=6,∴BE=3,Rt△ABE中,DE==4,同理AE=4,---(7分)
又∵AD=4,∴△ADE是邊長為4的等邊三角形,,
∵BC⊥平面ADE
∴四面體ABCD的體積V=.----(9分)
(Ⅲ)假設在BC上取一點F,使GF∥平面ADE.
記AD的中點為H,在BC上取一點F,使BF=2,則FE=1,…(11分)
連接GF、EH
∵G為△ABD的重心,H為AD中點
,∴GF∥HE;
又HE?平面ADE,GF?平面ADE,∴GF∥平面ADE,
故在BC上存在一點F,使BF=2,則有GF∥平面ADE…(13分)
分析:(I)由等腰三角形“三線合一”,可證出AE⊥BC且DE⊥BC,再用線面垂直的判定定理可證出BC⊥平面ADE,從而得到平面ADE⊥平面ABC;
(II)根據(jù)題意可算出△ADE是邊長為4的等邊三角形,再結(jié)合BC⊥平面ADE,即可算出幾何體ABCD的體積;
(III)記AD的中點為H,在BC上取一點F,使BF=2,連接GF、EH.根據(jù)三角形重心的性質(zhì)得到線段成比例,從而GF∥EH,最后利用線面平行的判定得到GF∥平面ADE,
從而在BC上存在一點F,使GF∥平面ADE.
點評:本題給出一個特殊四面體,叫我們證明面面垂直并求四面體的體積,著重考查了空間平行、垂直位置關(guān)系的證明和錐體體積公式等知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•順義區(qū)一模)如圖,已知在空間四邊形ABCD中,AB=AC=DB=DC,E為BC的中點.
(Ⅰ)求證:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求幾何體ABCD的體積;
(Ⅲ)在(Ⅱ)的條件下,若G為△ABD的重心,試問在線段BC上是否存在點F,使GF∥平面ADE?若存在,請指出點F在BC上的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:設計選修數(shù)學2-1蘇教版 蘇教版 題型:044

如圖,已知在空間四邊形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,求OA與BC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

如圖,已知:空間四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA上的點,且滿足,

(1)求證:EFGH是梯形;

(2)若BD=a,求梯形EFGH的中位線的長.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年北京市順義區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

如圖,已知在空間四邊形ABCD中,AB=AC=DB=DC,E為BC的中點.
(Ⅰ)求證:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求幾何體ABCD的體積;
(Ⅲ)在(Ⅱ)的條件下,若G為△ABD的重心,試問在線段BC上是否存在點F,使GF∥平面ADE?若存在,請指出點F在BC上的位置,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案