(x-m)(x-m-1)…(x-9)(x,m∈N*且x>m)用排列數(shù)表示是

[  ]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(x2+ax+a)
ex
,(a為常數(shù),e為自然對(duì)數(shù)的底).
(1)令μ(x)=
1
ex
,a=0,求μ'(x)和f'(x);
(2)若函數(shù)f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
[理](3)在(2)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0、3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

M={x|x=m+
1
6
,m∈Z}
,N={x|x=
n
2
-
1
3
,n∈Z}
,則集合M,N的關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镈,值域?yàn)锽,如果存在函數(shù)x=g(t),使得函數(shù)y=f(g(t))的值域仍然是B,那么稱函數(shù)x=g(t)是函數(shù)y=f(x)的一個(gè)等值域變換.
有下列說(shuō)法:
①若f(x)=2x+b,x∈R,x=t2-2t+3,t∈R,則x=g(t)不是f(x)的一個(gè)等值域變換;
②f(x)=|x|(x∈R),x=log3(t2+1),(t∈R),則x=g(t)是f(x)的一個(gè)等值域變換;
③若f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R,則x=g(t)是f(x)的一個(gè)等值域變換;
④設(shè)f(x)=log2x(x>0),若x=g(t)=5t+5-t+m是y=f(x)的一個(gè)等值域變換,且函數(shù)f(g(t))的定義域?yàn)镽,則m的取值范圍是m≤-2.
在上述說(shuō)法中,正確說(shuō)法的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•順義區(qū)二模)對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(diǎn)(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點(diǎn)P1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問(wèn),是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合M={f(x)|f(-x)=-f(x),x∈R},集合N={f(x)|f(x+2)+f(x)=0,x∈R},若不恒為零的函數(shù)f(x)∈M∩N.則f(x)的一個(gè)可能的函數(shù)關(guān)系式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案