【題目】已知函數(shù)
(1)若為的極值點,求實數(shù)的值;
(2)若在上為增函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,方程有實根,求實數(shù)的最大值.
【答案】(1);(2);(3)0.
【解析】
(1)根據(jù)建立關(guān)于的方程求出的值.
(2)本小題實質(zhì)是在區(qū)間上恒成立,進(jìn)一步轉(zhuǎn)化為在區(qū)間上恒成立,
然后再討論和兩種情況研究.
(3)時,方程可化為,
問題轉(zhuǎn)化為在上有解,
利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間極值最值,從而求出值域,問題得解.
解:(1)
因為為的極值點,所以,即,解得.
又當(dāng)時,,從而為的極值點成立.
(2)因為函數(shù)在上為增函數(shù),所以
在上恒成立.
①當(dāng)時,在上恒成立,
所以在上為增函數(shù),故符合題意.
②當(dāng)時,由函數(shù)的定義域可知,必須有對恒成立,
故只能,所以在上恒成立.
令函數(shù),其對稱軸為,
因為,所以,要使在上恒成立,只要即可,
即,所以.
因為,所以.
綜上所述,的取值范圍為.
(3)當(dāng)時,方程可化為.
問題轉(zhuǎn)化為在上有解,
即求函數(shù)的值域.
因為函數(shù),令函數(shù),
則,
所以當(dāng)時,,從而函數(shù)在上為增函數(shù),
當(dāng)時,,從而函數(shù)在上為減函數(shù),
因此.
而,所以,因此當(dāng)時,取得最大值0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第35屆牡丹花會期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場所是王城公園和牡丹公園.
(1)若學(xué)生甲和乙必須在同一個公園,且甲和丙不能在同一個公園,則共有多少種不同的分配方案?
(2)每名學(xué)生都被隨機分配到其中的一個公園,設(shè)分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年1月31日晚上月全食的過程分為初虧、食既、食甚、生光、復(fù)圓五個階段,月食的初虧發(fā)生在19時48分,20時51分食既,食甚時刻為21時31分,22時08分生光,直至23時12分復(fù)圓全食伴隨有藍(lán)月亮和紅月亮,全食階段的“紅月亮”將在食甚時刻開始,生光時刻結(jié)束,一市民準(zhǔn)備在19:55至21:56之間的某個時刻欣賞月全食,則他等待“紅月亮”的時間不超過30分鐘的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為且橢圓上存在一點,滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知分別是橢圓的左、右頂點,過的直線交橢圓于兩點,記直線的交點為,是否存在一條定直線,使點恒在直線上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個極值點,,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實中央扶貧工作重大決策部署,在各個貧困縣全力推進(jìn)定點扶貧各項工作,取得了積極成效,某貧困縣為了響應(yīng)國家精準(zhǔn)扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時間的關(guān)系如下表所示:
土地使用面積(單位:畝) | |||||
管理時間(單位:月) |
并調(diào)查了某村名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | ||
女性村民 |
求出相關(guān)系數(shù)的大小,并判斷管理時間與土地使用面積是否線性相關(guān)?
若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望.
參考公式:,參考數(shù)據(jù):,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,A(x1,y1),B(x2,y2)是過F的直線與拋物線的兩個交點,求證:
(1)y1y2=-p2,;(2)為定值;
(3)以AB為直徑的圓與拋物線的準(zhǔn)線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若在上至少存在一個,滿足,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,AD=CD=,O是AC的中點,E是BD的中點.
(1)證明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com