在橢圓數(shù)學(xué)公式+數(shù)學(xué)公式=1內(nèi)有一點(diǎn)M(4,-1),使過點(diǎn)M的弦AB的中點(diǎn)正好為點(diǎn)M,求弦AB所在的直線的方程.

解:由題意,直線的斜率存在
設(shè)直線的斜率為k,則方程為y+1=k(x-4),與橢圓+=1聯(lián)立,
消去y得(1+4k2)x2-(32k2+8k)x-40=0,
∴x1+x2=
∵M(jìn)是弦AB的中點(diǎn),
=8,解得k=1,
此時方程(1+4k2)x2-(32k2+8k)x-40=0的判別式大于0,從而直線AB與橢圓有兩個交點(diǎn),k=1符合題意.
∴AB的方程是x-y-5=0.
分析:假設(shè)直線AB的方程與橢圓方程聯(lián)立,消去y得x的方程,利用M是弦AB的中點(diǎn),建立方程,可求得k的值,驗(yàn)證此時方程的判別式大于0,從而得解.
點(diǎn)評:本題考查的重點(diǎn)是橢圓中弦中點(diǎn)問題,解題的關(guān)鍵是假設(shè)方程與橢圓方程聯(lián)立,利用韋達(dá)定理求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓=1內(nèi)有一點(diǎn)P(1,-1),F為橢圓的右焦點(diǎn),在橢圓上有一點(diǎn)M,使|MP|+2|MF|取得最小值,則點(diǎn)M的坐標(biāo)為

A.(,-1)                                                  B.(±,-1)

C.(1,-)                                                      D.(-,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓+=1內(nèi)有一點(diǎn)P(1,-1),F為右焦點(diǎn),在橢圓上有一點(diǎn)M,使|MP|+2|MF|的值最小,則點(diǎn)M的坐標(biāo)是(    )

A.(,-1)                            B.(±,-1)

C.(1,±)                              D.(1,-)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省衡水中學(xué)高二(上)第三次調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

在橢圓+=1內(nèi)有一點(diǎn)P(1,-1),F(xiàn)為橢圓左焦點(diǎn),在橢圓上有一點(diǎn)M,使|MP|+2|MF|的值最小,則這一最小值是( )
A.
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省唐山一中高二(上)第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

在橢圓+=1內(nèi)有一點(diǎn)M(4,-1),使過點(diǎn)M的弦AB的中點(diǎn)正好為點(diǎn)M,求弦AB所在的直線的方程.

查看答案和解析>>

同步練習(xí)冊答案