3.已知函數(shù)f(x)=log3x,x0∈[1,27],則不等式1≤f(x0)≤2成立的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{3}{13}$D.$\frac{2}{9}$

分析 計算出滿足不等式1≤f(x0)≤2成立的x的范圍,根據(jù)區(qū)間的長度之比求出概率即可.

解答 解:由log33=1,log39=2,
故不等式1≤f(x0)≤2成立的概率p=$\frac{9-3}{27-1}$=$\frac{3}{13}$,
故選:C.

點評 本題考查了對數(shù)函數(shù)的性質(zhì),考查幾何概型問題,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知拋物線y2=16x的焦點恰好是雙曲線$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點,則雙曲線的漸近線方程為y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3-mx2+x+2有兩個極值點,則m的取值范圍是( 。
A.(-1,1)B.[-1,1]C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知各項均為正數(shù)的等比數(shù)列{an}的前n項和為Sn,若a5=2a3+a4,且S5=62.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,數(shù)列{bn}的前n項和為Tn,求證:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-x|x-a|-3a,a>0.
(1)若a=1,求f(x)的單調(diào)區(qū)間;
(2)求函數(shù)在x∈[0,3]上的最值;
(3)當a∈(0,3)時,若函數(shù)f(x)恰有兩個不同的零點x1,x2,求$|{\frac{1}{x_1}-\frac{1}{x_2}}|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某校高三共有2000名學生參加廣安市聯(lián)考,現(xiàn)隨機抽取100名學生的成績單(單位:分),并列成如表所示的頻數(shù)分布表:
組別[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)6182826175
(1)試估計該年級成績≥80分的學生人數(shù);
(2)已知樣本在成績在[40,50)中的6名學生中,有4名男生,2名女生,現(xiàn)從中選2人進行調(diào)研,求恰好選中一名男生一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知拋物線C:y2=-4x的焦點為F,A(-2,1),P為拋物線C上的動點,則|PF|+|PA|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知直線l過點(0,5),且在兩坐標軸上的截距之和為2.
(1)求直線l的方程;
(2)若直線l1過點($\frac{8}{3}$,-1)且與直線l垂直,直線l2與直線l1關(guān)于x軸對稱,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.斧頭的形狀叫楔形,在《算數(shù)書》中又稱之為“鄆(y$\stackrel{、}{u}$n)都”或“壍(qi$\stackrel{、}{a}$n)堵”:其上底是一矩形,下底是一線段.有一斧頭:上厚為三,下厚為六,高為五及袤(m$\stackrel{、}{a}$o)為二,問此斧頭的體積為幾何?意思就是說有一斧頭形的幾何體,上底為矩形,下底為一線段,上底的長為3,下底線段長為6,上下底間的距離(高)為5,上底矩形的寬為2,則此幾何體的體積是( 。
A.6B.10C.16D.20

查看答案和解析>>

同步練習冊答案