已知中心在原點(diǎn)的雙曲線(xiàn)的右焦點(diǎn)為,實(shí)軸長(zhǎng).
(1)求雙曲線(xiàn)的方程
(2)若直線(xiàn)與雙曲線(xiàn)恒有兩個(gè)不同的交點(diǎn),且為銳角(其中為原點(diǎn)),求的取值范圍.
(1);(2).
解析試題分析:(1)依題意先設(shè)雙曲線(xiàn)的方程為,依據(jù)題中條件得到、的值,進(jìn)而由得到的值,進(jìn)而寫(xiě)出雙曲線(xiàn)的方程即可;(2)設(shè),聯(lián)立直線(xiàn)與雙曲線(xiàn)的方程,消去得到,依題意得到,且,要使為銳角,只須即可,從而只須將進(jìn)行坐標(biāo)化并將代入,得到,結(jié)合、及即可得出的取值范圍.
試題解析:(1)依題意可設(shè)雙曲線(xiàn)的方程為
則有且,所以,
所以該雙曲線(xiàn)的方程為
(2)
設(shè)
,即
綜上:.
考點(diǎn):1.雙曲線(xiàn)的標(biāo)準(zhǔn)方程及其幾何性質(zhì);2.直線(xiàn)與雙曲線(xiàn)的綜合問(wèn)題;3.平面向量數(shù)量積的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線(xiàn)過(guò)點(diǎn)(3,-2),且與橢圓4x2+9y2=36有相同的焦點(diǎn).
(1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)求以雙曲線(xiàn)的右準(zhǔn)線(xiàn)為準(zhǔn)線(xiàn)的拋物線(xiàn)的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
是否同時(shí)存在滿(mǎn)足下列條件的雙曲線(xiàn),若存在,求出其方程,若不存在,說(shuō)明理由.
(1)焦點(diǎn)在軸上的雙曲線(xiàn)漸近線(xiàn)方程為;
(2)點(diǎn)到雙曲線(xiàn)上動(dòng)點(diǎn)的距離最小值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
P為圓A:上的動(dòng)點(diǎn),點(diǎn).線(xiàn)段PB的垂直平分線(xiàn)與半徑PA相交于點(diǎn)M,記點(diǎn)M的軌跡為Γ.
(1)求曲線(xiàn)Γ的方程;
(2)當(dāng)點(diǎn)P在第一象限,且時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)雙曲線(xiàn)的左焦點(diǎn),作傾斜角為的直線(xiàn)交該雙曲線(xiàn)右支于點(diǎn),若,且,則雙曲線(xiàn)的離心率為_(kāi)_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,離心率e=,過(guò)左焦點(diǎn)F1作x軸的垂線(xiàn)交橢圓于A、A′兩點(diǎn),=4.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取平行于y軸的直線(xiàn)與橢圓相交于不同的兩點(diǎn)P、P′,過(guò)P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.求△PP′Q的面積S的最大值,并寫(xiě)出對(duì)應(yīng)的圓Q的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)橢圓的左頂點(diǎn)作斜率為2的直線(xiàn),與橢圓的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,已知.
(1)求橢圓的離心率;
(2)設(shè)動(dòng)直線(xiàn)與橢圓有且只有一個(gè)公共點(diǎn),且與直線(xiàn)相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知梯形ABCD中|AB|=2|CD|,點(diǎn)E滿(mǎn)足=λ,雙曲線(xiàn)過(guò)C、D、E三點(diǎn),且以A、B為焦點(diǎn).當(dāng)≤λ≤時(shí),求雙曲線(xiàn)離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓=1的焦點(diǎn)為F1、F2,點(diǎn)P為橢圓上的動(dòng)點(diǎn),當(dāng)∠F1PF2為鈍角時(shí),求點(diǎn)P的橫坐標(biāo)x0的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com