分析 畫出圖形,建立坐標(biāo)系,求出P的軌跡方程,M的軌跡方程,然后利用方程求解|$\overrightarrow{BM}$|的最小值.
解答 解:由等邊△ABC的高為3,可得△ABC為邊長(zhǎng)為2$\sqrt{3}$的正三角形,
如圖建立平面坐標(biāo)系,A(0,3),B(-$\sqrt{3}$,0),C($\sqrt{3}$,0),
由|$\overrightarrow{AP}$|=1得點(diǎn)P的軌跡方程為x2+(y-3)2=1①,
設(shè)M(x0,y0),由$\overrightarrow{PM}$=$\overrightarrow{MC}$得P(2x0-$\sqrt{3}$,2y0),
代入①式得M的軌跡方程為(x-$\frac{\sqrt{3}}{2}$)2+(y-$\frac{3}{2}$)2=$\frac{1}{4}$,
記圓心為N($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),
則|$\overrightarrow{BM}$|的最小值為|BN|-$\frac{1}{2}$=$\sqrt{(\frac{\sqrt{3}}{2}+\sqrt{3})^{2}+(\frac{3}{2})^{2}}$-$\frac{1}{2}$
=3-$\frac{1}{2}$=$\frac{5}{2}$.
故答案為:$\frac{5}{2}$.
點(diǎn)評(píng) 本題考查軌跡方程的求法,曲線與方程的關(guān)系,幾何意義的應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<x1x2<1 | B. | x1x2=1 | C. | 1<x1x2<2 | D. | x1x2≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
價(jià)格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com