兩條不重合的直線m,n以及兩個平面α,β,給出下列命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則m⊥n;
③若m∥n,n∥α,則m∥α;
④若m⊥α,m∥β,則α⊥β;
其中真命題的個數(shù)為( 。
A、0B、1C、2D、3
考點:空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:①若m∥α,n∥α,則m與n相交、平行或異面,故①錯誤;
②若m∥α,n⊥α,則直線與平面垂直的性質(zhì)得m⊥n,故②正確;
③若m∥n,n∥α,則m∥α或m?α,故③錯誤;
④若m⊥α,m∥β,則由平面與平面垂直的判定定理得α⊥β,故④正確.
故選:C.
點評:本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,高A1A=3,體積為24,則對角線A1C為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c(x∈R)的部分對應(yīng)值如表:
-4-3-2-10123
1040-2-20410
則不等式cx2+bx+a≥0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠需要圍建一個面積為512平方米的矩形堆料場,一邊可以利用原有的墻壁,其他三邊需要砌新的墻壁,問堆料場的長和寬各為多少時,才能使砌墻所用的材料最省?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3cm,高為6c m的圓柱體毛坯切削得到,則切削掉部分的體積與原來毛坯體積的比值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),過點P(-2,-4)的直線l的參數(shù)方程為
x=-2+
2
2
t
y=-4+
2
2
t
(t為參數(shù)),l與C分別交于M,N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

存在實數(shù)x,使得關(guān)于x的不等式cos2x<a-sinx成立,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義域為R的偶函數(shù),當(dāng)x≤0時,f(x)=1+
1
x-1

(1)求f(2)的值及當(dāng)x>0時y=f(x)的解析式;
(2)用定義法判斷y=f(x)在區(qū)間(-∞,0]的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,是某班一次競賽成績的頻數(shù)分布直方圖,利用組中值可估計其的平均分為
 

查看答案和解析>>

同步練習(xí)冊答案