如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=AD=1,AB=2,點(diǎn)E是AB上一點(diǎn),AE等于何值時(shí),二面角P-EC-D的平面角為
【答案】分析:有題中的條件,可建立空間直角坐標(biāo)系,設(shè)出點(diǎn)E的坐標(biāo),利用構(gòu)成二面角的兩個(gè)半平面與其平面的法向量之間的關(guān)系,利用二面角的大小建立點(diǎn)E的坐標(biāo)未知量的方程進(jìn)而求解.
解答:解:如圖,以D為原點(diǎn),射線DA、DC、DP為x,y,z軸的正方向建立空間直角坐標(biāo)系,
則P(0,0,1),C(0,2,0),設(shè)E(1,y,0),則
設(shè)平面PEC的法向量為 
解之得x:y:z=(2-y):1:2,
=(2-y,1,2),而平面ECD的法向量=(0,0,1),
二面角P-EC-D的平面角,
=,

∴當(dāng)時(shí),二面角P-EC-D的平面角為
點(diǎn)評:此題重點(diǎn)考查了利用空間向量借助平面的法向量的夾角與二面角的大小之間的關(guān)系,同時(shí)還考查了利用方程的思想解出未知的變量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案