________是最常見的一種演繹推理形式.

第一段講的是一般性道理,稱為________;第二段講的是研究對(duì)象的特殊情況,稱為________;第三段是由大前提和小前提作出的判斷,稱為________.

答案:三段論,大前提,小前提,結(jié)論
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0),點(diǎn)P(m,n)為拋物線上任意一點(diǎn),其中m≥0.
(1)判斷拋物線與正比例函數(shù)的交點(diǎn)個(gè)數(shù);
(2)定義:凡是與圓錐曲線有關(guān)的圓都稱為該圓錐曲線的伴隨圓,如拋物線的內(nèi)切圓就是最常見的一種伴隨圓.此外還有以焦點(diǎn)弦為直徑的圓,以及以焦點(diǎn)弦為弦且過頂點(diǎn)的圓等.同類的伴隨圓構(gòu)成一個(gè)圓系,圓系中有無(wú)數(shù)多個(gè)圓.求證:拋物線內(nèi)切圓系方程為:(x-p-m)2+y2=p2+2pm(其中m為參數(shù)且m≥0);
(3)請(qǐng)研究拋物線以焦點(diǎn)弦為直徑的伴隨圓,推導(dǎo)出其圓系方程,并寫出一個(gè)關(guān)于它的正確命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆遼寧省盤錦市高二下期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題

在數(shù)學(xué)證明中,①假言推理、②三段論推理、③傳遞關(guān)系推理、④完全歸納推理,是經(jīng)常使用的四種演繹推理,下面推理過程使用到上述推理規(guī)則中的(     )如(右圖)

因?yàn)閘AB,所以又因?yàn)锳B//CD,所以

 所以

A. ①②③        B.②③④

C. ②③          D.①②③④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y2=2px(p>0),點(diǎn)P(m,n)為拋物線上任意一點(diǎn),其中m≥0.
(1)判斷拋物線與正比例函數(shù)的交點(diǎn)個(gè)數(shù);
(2)定義:凡是與圓錐曲線有關(guān)的圓都稱為該圓錐曲線的伴隨圓,如拋物線的內(nèi)切圓就是最常見的一種伴隨圓.此外還有以焦點(diǎn)弦為直徑的圓,以及以焦點(diǎn)弦為弦且過頂點(diǎn)的圓等.同類的伴隨圓構(gòu)成一個(gè)圓系,圓系中有無(wú)數(shù)多個(gè)圓.求證:拋物線內(nèi)切圓系方程為:(x-p-m)2+y2=p2+2pm(其中m為參數(shù)且m≥0);
(3)請(qǐng)研究拋物線以焦點(diǎn)弦為直徑的伴隨圓,推導(dǎo)出其圓系方程,并寫出一個(gè)關(guān)于它的正確命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江西省吉安市高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知拋物線y2=2px(p>0),點(diǎn)P(m,n)為拋物線上任意一點(diǎn),其中m≥0.
(1)判斷拋物線與正比例函數(shù)的交點(diǎn)個(gè)數(shù);
(2)定義:凡是與圓錐曲線有關(guān)的圓都稱為該圓錐曲線的伴隨圓,如拋物線的內(nèi)切圓就是最常見的一種伴隨圓.此外還有以焦點(diǎn)弦為直徑的圓,以及以焦點(diǎn)弦為弦且過頂點(diǎn)的圓等.同類的伴隨圓構(gòu)成一個(gè)圓系,圓系中有無(wú)數(shù)多個(gè)圓.求證:拋物線內(nèi)切圓系方程為:(x-p-m)2+y2=p2+2pm(其中m為參數(shù)且m≥0);
(3)請(qǐng)研究拋物線以焦點(diǎn)弦為直徑的伴隨圓,推導(dǎo)出其圓系方程,并寫出一個(gè)關(guān)于它的正確命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案