設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面.考察下列命題,其中真命題是( )
A.m⊥α,n?β,m⊥n⇒α⊥β
B.α⊥β,α∩β=m,m⊥n⇒n⊥β
C.α⊥β,m⊥α,n∥β⇒m⊥n
D.α∥β,m⊥α,n∥β⇒m⊥n
【答案】分析:本題考查的知識點是空間中直線與平面之間位置關(guān)系的判定,我們要根據(jù)空間中線面關(guān)系的判定及性質(zhì)定理對四個結(jié)論逐一進(jìn)行判斷.若m⊥α,n?β,m⊥n時,α、β可能平行,也可能相交,不一定垂直;若α⊥β,m⊥α,n∥β時,m與n可能平行、相交或異面,不一定垂直,α⊥β,α∩β=m時,與線面垂直的判定定理比較缺少條件n?α,則n⊥β不一定成立.
解答:解:A:m⊥α,n?β,m⊥n時,α、β可能平行,也可能相交,不一定垂直,故A不正確
B:當(dāng)α⊥β,α∩β=m時,若n⊥m,n?α,則n⊥β,但題目中無條件n?α,故B也不一定成立,
C:α⊥β,m⊥α,n∥β時,m與n可能平行、相交或異面,不一定垂直,故C錯誤
D:α∥β,m⊥α,n∥β時,m與n一定垂直,故D正確
故選D.
點評:判斷或證明線面平行的常用方法有:①利用線面平行的定義(無公共點);②利用線面平行的判定定理(a?α,b?α,a∥b⇒a∥α);③利用面面平行的性質(zhì)定理(α∥β,a?α⇒a∥β);④利用面面平行的性質(zhì)(α∥β,a?α,a?,a∥α⇒?a∥β).線線垂直可由線面垂直的性質(zhì)推得,直線和平面垂直,這條直線就垂直于平面內(nèi)所有直線,這是尋找線線垂直的重要依據(jù).垂直問題的證明,其一般規(guī)律是“由已知想性質(zhì),由求證想判定”,也就是說,根據(jù)已知條件去思考有關(guān)的性質(zhì)定理;根據(jù)要求證的結(jié)論去思考有關(guān)的判定定理,往往需要將分析與綜合的思路結(jié)合起來.