若集合P={x|x<4},Q={x|x2<4},則{x|x<4}=


  1. A.
    Q∪P
  2. B.
    P∩Q
  3. C.
    P∪CRQ
  4. D.
    Q∪CRP
A
分析:根據(jù)題意,對于Q,求出x2<4的解集,化為區(qū)間的形式,進而與P進行集合之間的運算:求交集,求并集,求補集等,最后與選項進行比較,即可得答案.
解答:對Q有,Q=(-2,2),
對于P,有P=(-∞,4);
則Q∪P={x|x<4}
所以A正確,
故選擇A.
點評:本題考查集合間包含關(guān)系的判斷,要先解不等式,再進行集合關(guān)系的判斷,注意端點值的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、若集合P={x|x≤4,x∈N*},Q={x|x>3,x∈Z},則P∩( CZQ)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、若集合P={x|x<4},Q={x|x2<4},則{x|x<4}=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、若集合P={x|x(x-1)>0},Q={x||x|<1},則P∩Q=
{x|-1<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合P={x|x≤4,x∈N*},Q={x|x>1,x∈N*},則P∩Q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中
①對于每一個實數(shù)x,f(x)是y=2-x2和y=x這兩個函數(shù)中的較小者,則f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,則x1+x2=3.
③函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),其定義域為[a-1,2a],則f(x)的圖象是以(0,1)為頂點,開口向下的拋物線.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},則P∩Q={x|x=15m-8,m∈N+}
⑤若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中正確的命題的序號是
①②④⑤
①②④⑤

查看答案和解析>>

同步練習(xí)冊答案