在極坐標(biāo)系中,動(dòng)點(diǎn)P(ρ,θ)運(yùn)動(dòng)時(shí),ρ與成反比,動(dòng)點(diǎn)P的軌跡經(jīng)過(guò)點(diǎn)(2,0).
(1)求動(dòng)點(diǎn)P的軌跡的極坐標(biāo)方程;
(2)將(1)中極坐標(biāo)方程化為直角坐標(biāo)方程,并指出軌跡是何種曲線.

(1);(2)y=-x2+1

解析試題分析:(1)利用ρ與成反比例以及點(diǎn)P軌跡過(guò)定點(diǎn)(2,0)求解.(2)記住極坐標(biāo)與直角坐標(biāo)之間轉(zhuǎn)化的公式,分別代入即可求解.
設(shè) ∵2=,∴k=1. ∴
(2)∵ρ+ρsin θ=2,∴+y=2.整理得y=-x2+1.∴軌跡為開(kāi)口向下,頂點(diǎn)為(0,1)的拋物線.
考點(diǎn):極坐標(biāo)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線的極坐標(biāo)方程為,圓M的參數(shù)方程為。求:(1)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求圓M上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù))
(1)寫(xiě)出直線l和曲線C的普通方程;
(2)設(shè)直線l和曲線C交于A,B兩點(diǎn),定點(diǎn)P(—2,—3),求|PA|·|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為  (a>b>0,為參數(shù)),以Ο為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,已知曲線C1上的點(diǎn)M 對(duì)應(yīng)的參數(shù)= ,與曲線C2交于點(diǎn)D 
(1)求曲線C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+)是曲線C1上的兩點(diǎn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

化極坐標(biāo)方程ρ2cosθ-ρ=0為直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為,直線的極坐標(biāo)方程為ρcos=a,且點(diǎn)A在直線上.
(1)求a的值及直線的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為,(α為參數(shù)),試判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-)=.
(1)求圓O和直線l的直角坐標(biāo)方程.
(2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)
同時(shí)給出極坐標(biāo)系與直角坐標(biāo)系,且極軸為ox,則極坐標(biāo)方程化為對(duì)應(yīng)的直角坐標(biāo)方程是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(θ為參數(shù)),試求直線l與曲線C的普通方程,并求出它們的公共點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案