設(shè)關(guān)于x的不等式|x2-2x+3m-1|≤2x+3的解集為A,且-1∉A,1∈A,則實(shí)數(shù)m的取值范圍是
(-
1
3
,
7
3
]
(-
1
3
7
3
]
分析:依題意,|1-2+3m-1|≤2+3且|1+2+3m-1|>2×(-1)+3,解之即可求得實(shí)數(shù)m的取值范圍.
解答:解:∵關(guān)于x的不等式|x-2x+3m-1|≤2x+3的解集為A,且-1∉A,1∈A,
∴|12-2×1+3m-1|≤2×1+3且|(-1)2-2×(-1)+3m-1|>2×(-1)+3,
|3m-2|≤5①
|3m+2|>1②
,
解①得:-1≤m≤
7
3
;
解②得:m>-
1
3
或m<-1,
綜合①②得:-
1
3
<m≤
7
3

∴實(shí)數(shù)m的取值范圍是(-
1
3
,
7
3
].
故答案為:(-
1
3
,
7
3
].
點(diǎn)評:本題考查絕對值不等式的解法,考查等價(jià)轉(zhuǎn)化思想與方程思想,考查解不等式的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實(shí)數(shù)a的取值范圍是:
 

B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點(diǎn)P.若
PB
PA
=
1
2
PC
PD
=
1
3
,則
BC
AD
的值為
 

C.(坐標(biāo)系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
2
cosθ-sinθ
,則曲線C上到直線l距離為
2
的點(diǎn)的個(gè)數(shù)為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)二模)設(shè)關(guān)于x的不等式x(x-a-1)<0(a∈R)的解集為M,不等式
x+1x-3
≤0
的解集為N.
(1)當(dāng)a=1時(shí),求集合M;   
(2)若M⊆N,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>0,使關(guān)于x的不等式|x-3|+|x-4|<a在R上的解集不是空集,設(shè)a的取值集合是A;若不等式|x|>bx(b∈R)的解集為(0,+∞),設(shè)實(shí)數(shù)b的取值集合是B,試求當(dāng)x∈A∪B時(shí),f(x)=2|x+1|-|x-1|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的不等式|x-a|<1的解集為A,且2∈A,則正整數(shù)a的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①設(shè)函數(shù)f(x)=g(x)+x2,曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為y=2x+1,則曲線y=f(x)在點(diǎn)(1,f(1))處切線的斜率為-
1
2
;
②關(guān)于x的不等式(a-3)x2<(4a-2)x對任意的a∈(0,1)恒成立,則x的取值范圍是(-∞,-1]∪[
2
3
,+∞)
,
③變量X與Y相對應(yīng)的一組數(shù)據(jù)為(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);變量U與V相對應(yīng)的一組數(shù)據(jù)為(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示變量Y與X之間的線性相關(guān)系數(shù),r2表示變量V與U之間的線性相關(guān)系數(shù),則r2<0<r1;
④下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù)
x 3 4 5 6
y 2.5 3 4 4.5
根據(jù)上表提供的數(shù)據(jù),得出y關(guān)于x的線性回歸方程為y=a+0.7x,則a=-0.35;
以上命題正確的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案