【題目】2020年新冠肺炎疫情暴發(fā)以來,中國政府迅速采取最全面、最嚴(yán)格、最徹底的防控舉措,堅決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻(xiàn).為普及防治新冠肺炎的相關(guān)知識,某高中學(xué)校開展了線上新冠肺炎防控知識競答活動,現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)者,他們的得分(滿分100分)數(shù)據(jù)統(tǒng)計結(jié)果如圖:
(1)若此次知識競答得分整體服從正態(tài)分布,用樣本來估計總體,設(shè),分別為這200名幸運(yùn)者得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點值代替),求,的值(,的值四舍五入取整數(shù)),并計算;
(2)在(1)的條件下,為感謝大家積極參與這次活動,對參與此次知識競答的幸運(yùn)者制定如下獎勵方案:得分低于的獲得1次抽獎機(jī)會,得分不低于的獲得2次抽獎機(jī)會.假定每次抽獎中,抽到18元紅包的概率為,抽到36元紅包的概率為.已知高三某同學(xué)是這次活動中的幸運(yùn)者,記為該同學(xué)在抽獎中獲得紅包的總金額,求的分布列和數(shù)學(xué)期望,并估算舉辦此次活動所需要抽獎紅包的總金額.
參考數(shù)據(jù):;;.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知平面平面是邊長為2的等邊三角形,點是的中點,底面是矩形,,為上一點,且.
(1)若,點是的中點,求證:平面平面;
(2)是否存在,使得直線與平面所成角的正切值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均為正數(shù)的兩個數(shù)列,滿足,.且.
(1)求證數(shù)列為等差數(shù)列;
(2)求數(shù)列的通項公式;
(3)設(shè)數(shù)列,的前n項和分別為,,求使得等式成立的有序數(shù)對.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D、E分別是AC、BC的中點,F在SE上,且SF=2FE.
(1)求證:平面SBC⊥平面SAE
(2)若G為DE中點,求二面角G﹣AF﹣E的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年新冠肺炎疫情暴發(fā)以來,中國政府迅速采取最全面、最嚴(yán)格、最徹底的防控舉措,堅決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻(xiàn).為普及防治新冠肺炎的相關(guān)知識,某高中學(xué)校開展了線上新冠肺炎防控知識競答活動,現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)者,他們的得分(滿分100分)數(shù)據(jù)統(tǒng)計結(jié)果如圖:
(1)若此次知識競答得分整體服從正態(tài)分布,用樣本來估計總體,設(shè),分別為這200名幸運(yùn)者得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點值代替),求,的值(,的值四舍五入取整數(shù)),并計算;
(2)在(1)的條件下,為感謝大家積極參與這次活動,對參與此次知識競答的幸運(yùn)者制定如下獎勵方案:得分低于的獲得1次抽獎機(jī)會,得分不低于的獲得2次抽獎機(jī)會.假定每次抽獎中,抽到18元紅包的概率為,抽到36元紅包的概率為.已知高三某同學(xué)是這次活動中的幸運(yùn)者,記為該同學(xué)在抽獎中獲得紅包的總金額,求的分布列和數(shù)學(xué)期望,并估算舉辦此次活動所需要抽獎紅包的總金額.
參考數(shù)據(jù):;;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中,用如圖所示的三角形(楊輝三角)解釋了二項和的乘方規(guī)律.右邊的數(shù)字三角形可以看作當(dāng)n依次取0,1,2,3,…時展開式的二項式系數(shù),相鄰兩斜線間各數(shù)的和組成數(shù)列.例:,,,….
(1)寫出數(shù)列的通項公式(結(jié)果用組合數(shù)表示),無需證明;
(2)猜想,與的大小關(guān)系,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓相交于,兩點.
(1)當(dāng)直線的斜率時,求的面積;
(2)當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點與直角坐標(biāo)系的原點重合,極軸與軸的正半軸重合,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)若,是圓上一動點,求點到直線的距離的最小值和最大值;
(2)直線與關(guān)于原點對稱,且直線截曲線的弦長等于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體A-BCD中,已知平面平面BCD,為正三角形,為等腰直角三角形,其中C為直角頂點,E,F分別為校AC,AD的中點.
(1)求證:平面BEF;
(2)求證:平面ACD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com