平行四邊形的兩鄰邊所在直線的方程為x+y+1=0及3x-4=0,其對角線的交點是D(3,3),求另兩邊所在的直線的方程.

x+y-13=0和3x-y-16=0

解析試題分析:解:由題意得,解得
即平行四邊形給定兩鄰邊的頂點為為
又對角線交點為D(3,3),則此對角線上另一頂點為
∵另兩邊所在直線分別與直線x+y+1=0及3x-y+4=0平行,
∴它們的斜率分別為-1及3,
即它們的方程為,及,
∴另外兩邊所在直線方程分別為x+y-13=0和3x-y-16=0
考點:直線方程的求解
點評:解決的關鍵是利用直線的平行關系,以及直線的交點的求解來得到,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知兩定點為動點
(1)若在x軸上方,且是等腰直角三角形,求點坐標;
(2)若直線的斜率乘積為,求點坐標滿足的關系式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求傾斜角是直線y=-x+1的傾斜角的,且分別滿足下列條件的直線方程:
(1)經(jīng)過點(,-1);
(2)在y軸上的截距是-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知兩條直線的交點,求:(1)過點且過原點的直線方程;(2)過點且垂直于直線的直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

A(xA,yA),B(xB,yB)為平面直角坐標系上的兩點,其中xA,yA,xB,yBÎZ.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|·|△y|≠0,則稱點B為點A的“相關點”,記作:B=f(A).
(1)請問:點(0,0)的“相關點”有幾個?判斷這些點是否在同一個圓上,若在,寫出圓的方程;若不在,說明理由;
(2)已知點H(9,3),L(5,3),若點M滿足M=f(H),L=f(M),求點M的坐標;
(3)已知P0(x0,y0)(x0ÎZ,y0ÎZ)為一個定點, 若點Pi滿足Pi=f (Pi-1),其中i=1,2,3,···,n,求|P0Pn|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線過點
(1)若直線在坐標軸上的截距相等,求直線的方程;
(2)若直線與坐標軸的正半軸相交,求使直線在兩坐標軸上的截距之和最小時,直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知直線l經(jīng)過點(0,-2),其傾斜角是60°.
(1)求直線l的方程;(2)求直線l與兩坐標軸圍成三角形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖直線lx軸、y軸的正半軸分別交于A(8,0)、B(0,6)兩點,P為直線l上異于A、B兩點之間的一動點. 且PQOAOB于點Q

(1)若和四邊形的面積滿足時,請你確定P點在AB上的位置,并求出線段PQ的長;
(2)在x軸上是否存在點M,使△MPQ為等腰直角三角形,若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三角形ABC的頂點坐標為A(-1,5)、B(-2,-1)、C(4,3),M是BC邊上的中點.
(1)求AB邊所在的直線方程;
(2)求中線AM的長
(3)求AB邊的高所在直線方程.

查看答案和解析>>

同步練習冊答案