已知直線l2過A(1,0)、B(0,5),若直線l1與l2的距離是5,則l1的方程是
 
考點(diǎn):兩條平行直線間的距離
專題:直線與圓
分析:由條件求得l2的方程為5x+y-5=0,設(shè)l1的方程是5x+y+k=0,則由直線l1與l2的距離是5,求得k的值,可得l1的方程.
解答: 解:由題意可得l2的方程為
x
1
+
y
5
=1,即5x+y-5=0.
設(shè)l1的方程是5x+y+k=0,則由直線l1與l2的距離是5,可得5=
|k+5|
25+1
,求得k=-30,或k=20,
故l1的方程是5x+y-30=0,或5x+y+20=0,
故答案為:5x+y-30=0,或5x+y+20=0.
點(diǎn)評(píng):本題主要考查直線的截距式方程,兩條平行直線間的距離公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|lgx|,0<x≤10
-
1
4
x+
7
2
,x>10
,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是(  )
A、(1,10)
B、(10,12)
C、(10,13)
D、(10,14)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2≤0},集合B={x|x2+mx+3≤0}.
(1)若A⊆B,求實(shí)數(shù)m的取值范圍;
(2)若A∩B≠∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若A,B,C成等差數(shù)列,且AC=
6
,BC=2,則A=( 。
A、135°B、45°
C、30°D、45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在圓x2+y2-2x=0上求一點(diǎn)P,使P到直線x+y+1=0的距離最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知棱長(zhǎng)為2
3
的正四面體A-BCD,面ACD沿CD旋轉(zhuǎn)至面PCD.
(1)二面角A-CD-P的余弦值為何值時(shí),AP∥平面BCD;
(2)在第一問的前提下,求直線AB與平面PCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形OABC的邊長(zhǎng)為2.
(1)在其四邊或內(nèi)部取點(diǎn)P(x,y),且x,y∈Z,求事件:“|OP|>1”的概率;
(2)在其內(nèi)部取點(diǎn)P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面積均大于
2
3
”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若冪函數(shù)f(x)存在反函數(shù)f-1(x),且反函數(shù)的圖象經(jīng)過(3
3
3
3
),則f(x)的表達(dá)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+3
x+1
,g(x)=|x-
a
x
|.
(1)a=-2時(shí),求函數(shù)g(x)的最小值;
(2)若對(duì)?t∈[1,3],在區(qū)間[1,3]總存在兩個(gè)不同的x,使得g(x)=f(t),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案