某商場為吸引顧客消費推出一項促銷活動,促銷規(guī)則如下:到該商場購物消費滿100元就可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,進行抽獎(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(若指針停到兩區(qū)間的實線處,則重新轉(zhuǎn)動).若顧客在一次消費中多次中獎,則對其獎勵進行累加.已知顧客甲到該商場購物消費了268元,并按照規(guī)則參與了促銷活動.

(1)求顧客甲中一等獎的概率;

(2)X為顧客甲所得的獎金數(shù),求X的分布列及其數(shù)學期望.

 

(1)(2)

【解析】(1)設(shè)事件A表示該顧客中一等獎,

P(A)××,

所以該顧客中一等獎的概率是.

(2)X的可能取值為20,15,10,5,0

P(X20)×,

P(X15)×,

P(X10)××,

P(X5)×,

P(X0)×.

所以X的分布列為

X

20

15

10

5

0

P

數(shù)學期望

E(X)20×15×10×.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題能力測評2練習卷(解析版) 題型:解答題

某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100/平方米,底面的建造成本為160/平方米,該蓄水池的總建造成本為12 000π為圓周率)

(1)V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;

(2)討論函數(shù)V(r)的單調(diào)性,并確定rh為何值時該蓄水池的體積最大.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練9練習卷(解析版) 題型:填空題

若等比數(shù)列{an}滿足a2a420a3a540,則公比q________;前n項和Sn________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練7練習卷(解析版) 題型:解答題

如圖,在ABC中,ABC90°,AB,BC1,PABC內(nèi)一點,BPC90°.

(1)PB,求PA;

(2)APB150°,求tanPBA.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練7練習卷(解析版) 題型:選擇題

已知αR,sin α2cos α,則tan 2α等于(  )

A. B. C.- D.-

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練18練習卷(解析版) 題型:選擇題

ABC各邊的中點分別為D,E,F,在A,BC,D,E,F中任取4點,若這4點為平行四邊形頂點,則稱為選取成功.某人連續(xù)進行3次這種選取,則至少成功1次的概率是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練17練習卷(解析版) 題型:填空題

利用計算機產(chǎn)生01之間的均勻隨機數(shù)a,則事件3a1>0”發(fā)生的概率為________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練16練習卷(解析版) 題型:選擇題

直線4kx4yk0與拋物線y2x交于A,B兩點,若|AB|4,則弦AB的中點到直線x0的距離等于(  )

A. B2 C. D4

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練12練習卷(解析版) 題型:選擇題

如圖所示,在四邊形A-BCD中,ADBC,ADABBCD45°,BAD90°,將ABD沿BD折起,使平面ABD平面BCD,構(gòu)成三棱錐A?BCD,則在三棱錐ABCD中,下列命題正確的是(  )

A.平面ABD平面ABC

B.平面ADC平面BDC

C.平面ABC平面BDC

D.平面ADC平面ABC

 

查看答案和解析>>

同步練習冊答案