已知f(x)是R上的偶函數(shù),f(2)=-1,若f(x)的圖象向右平移1個(gè)單位長(zhǎng)度,得到一個(gè)奇函數(shù)的圖象,則f(1)+f(2)+f(3)+…+f(2010)=   
【答案】分析:由題意f(x)是R上的偶函數(shù),f(x-1)是R上的奇函數(shù),由此可以得出函數(shù)的周期為4,再由f(2)=-1求出f(-2)=-1,由奇函數(shù)的性質(zhì)得出f(-1)=0,從而可得f(1)=0,求出一個(gè)周期上的四個(gè)函數(shù)的和,即可求出f(1)+f(2)+f(3)+…+f(2009)的值.
解答:解:由題意f(x)是R上的偶函數(shù),f(x-1)是R上的奇函數(shù),
f(-x)=f(x),f(-x-1)=-f(x-1),①
∴f(-x-1)=f(x+1),②
由①②得f(x+1)=-f(x-1)③恒成立,
∴f(x-1)=-f(x-3)④
由③④得f(x+1)=f(x-3)恒成立,
∴函數(shù)的周期是4,下研究函數(shù)一個(gè)周期上的函數(shù)的值
由于f(x)的圖象向右平移一個(gè)單位后,則得到一個(gè)奇函數(shù)的圖象即f(0-1)=0,即f(-1)=0,
由偶函數(shù)知f(1)=0,由周期性知f(3)=0
由f(2)=-1得f(-2)=-1,由f(x+1)=-f(x-1),知f(0)=1,故f(4)=1
故有f(1)+f(2)+f(3)+f(4)=0
∴f(1)+f(2)+f(3)+…+f(2010)=f(2009)+f(2010)=f(1)+f(2)=0+(-1)=-1
故選A
點(diǎn)評(píng):本題考查函數(shù)奇偶性的運(yùn)用,求解本題的關(guān)鍵是根據(jù)函數(shù)的性質(zhì)求出函數(shù)的周期以及一個(gè)周期中函數(shù)值的和,然后根據(jù)周期性求出函數(shù)值的和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、已知f(x)是R上的偶函數(shù),f(2)=-1,若f(x)的圖象向右平移1個(gè)單位長(zhǎng)度,得到一個(gè)奇函數(shù)的圖象,則f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零點(diǎn),比較f(a),f(-2),f(1.5)的大小,用小于符號(hào)連接為
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=
x

(1)求當(dāng)x<0時(shí),f(x)的表達(dá)式
(2)判斷f(x)在區(qū)間(0,+∞)的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是R上的偶函數(shù),g(x)是R上的奇函數(shù),且g(x)=f(x-1),若g(-1)=2,則f(2008)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列四個(gè)命題:
①命題“已知f(x)是R上的減函數(shù),若a+b≥0,則f(a)+f(b)≤f(-a)+f(-b)”的逆否命題為真命題;
②若p或q為真命題,則p、q均為真命題;
③若命題p:?x∈R,x2-x+1<0,則?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要條件.
其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案