4.設(shè)數(shù)列{an}的前n項和為Sn.已知a1=1,$\frac{{2{S_n}}}{n}={a_{n+1}}-\frac{1}{3}{n^2}-n-\frac{2}{3}$,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式;
(3)在數(shù)列{bn}中,${b_n}=\frac{4n+2}{{{a_n}•{a_{n+1}}}}$,求{bn}的前n項和Tn

分析 (1)利用遞推關(guān)系即可得出;
(2)利用遞推關(guān)系、等差數(shù)列的通項公式即可得出;
(3)利用“裂項求和”即可得出.

解答 解:(1)∵$\frac{{2{S_n}}}{n}={a_{n+1}}-\frac{1}{3}{n^2}-n-\frac{2}{3}$,n∈N*
∴當(dāng)n=1時,$2{a_1}=2{S_1}={a_2}-\frac{1}{3}-1-\frac{2}{3}={a_2}-2$,
又a1=1,∴a2=4.
(2)∵$\frac{{2{S_n}}}{n}={a_{n+1}}-\frac{1}{3}{n^2}-n-\frac{2}{3}$,n∈N*
∴$2{S_n}=n{a_{n+1}}-\frac{1}{3}{n^3}-{n^2}-\frac{2}{3}n=n{a_{n+1}}-\frac{{n({n+1})({n+2})}}{3}$①,
∴當(dāng)n≥2時,$2{S_{n-1}}=({n-1}){a_n}-\frac{{({n-1})n({n+1})}}{3}$②
由①-②,得 2Sn-2Sn-1=nan+1-(n-1)an-n(n+1),
∵2an=2Sn-2Sn-1,∴2an=nan+1-(n-1)an-n(n+1),
∴$\frac{{{a_{n+1}}}}{n+1}-\frac{a_n}{n}=1$(n≥2),
又$\frac{a_2}{2}-\frac{a_1}{1}=1$,∴數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是以首項為$\frac{a_1}{1}=1$,公差為1的等差數(shù)列.
∴$\frac{a_n}{n}=1+1×({n-1})=n$,∴${a_n}={n^2}({n∈{N^*}})$.
(3)證明:由(2)知,${a_n}={n^2},n∈{N^*}$,
則${b_n}=\frac{4n+2}{{{a_n}•{a_{n+1}}}}=\frac{4n+2}{{{n^2}•{{(n+1)}^2}}}=2(\frac{1}{n^2}-\frac{1}{{{{(n+1)}^2}}})$;
∴${T_n}=2(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+…+\frac{1}{n^2}-\frac{1}{{{{(n+1)}^2}}})=2(1-\frac{1}{{{{(n+1)}^2}}})$

點(diǎn)評 本題考查了數(shù)列的遞推關(guān)系、等差數(shù)列的通項公式、“裂項求和”,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果a>b>0,那么下列不等式成立的是( 。
A.a2>abB.ab<b2C.$\frac{1}{a}$>$\frac{1}$D.$\frac{a}$>$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若對于所有的m∈R,均有M∩N≠∅,則b的取值范圍是(  )
A.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$B.$({-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}})$C.$[{-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}}]$D.$[{-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=(m+2)x2+mx+1為偶函數(shù),則f(x)在區(qū)間(1,+∞)上是( 。
A.先增后減B.先減后增C.減函數(shù)D.增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.x0是x的方程ax=logax(a>0,且a≠1)的解,則x0,1,a這三個數(shù)的大小關(guān)系是a<x0<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“x2-1>0”是“x>1”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某幾何體的三視圖如圖所示,則此幾何體的表面積是20+12$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知二面角α-BC-β的大小為θ(0≤θ≤$\frac{π}{2}$).在面α內(nèi)有△ABC,它在面β內(nèi)的射影為△A′BC.它們的面積分別為S,S′,求證:cosθ=$\frac{S′}{S}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.使|n2-5n+5|=1不成立的最小的非零自然數(shù)是5.

查看答案和解析>>

同步練習(xí)冊答案