(理)方程xy2-x2y=-2所表示的曲線的對稱性是

A.關(guān)于原點(diǎn)對稱                        B.關(guān)于兩坐標(biāo)軸對稱

C.關(guān)于直線y=x對稱                    D.關(guān)于直線y=-x對稱

(理)解析:x換-x,得-xy2-x2y=-2,方程變化,曲線不關(guān)于y軸對稱;

y換-y,得xy2+x2y=-2,方程變化,曲線不關(guān)于x軸對稱;

x換-x,y換-y,得-xy2+x2y=-2,即xy2-x2y=2,方程變化,曲線不關(guān)于坐標(biāo)原點(diǎn)對稱;

x換-y,y換-x,得-yx2+y2x=-2,即xy2-x2y=-2,方程不變化,

∴曲線關(guān)于y=-x對稱.

答案:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)方程xy2-x2y=-2所表示的曲線的對稱性是

A.關(guān)于原點(diǎn)對稱                              B.關(guān)于兩坐標(biāo)軸對稱

C.關(guān)于直線y=x對稱                          D.關(guān)于直線y=-x對稱

查看答案和解析>>

同步練習(xí)冊答案