設(shè)數(shù)列{an}的前n項的和Sn與an的關(guān)系是Sn=-an+1-
1
2n
,n∈N*
(1)求證:數(shù)列{2nan}為等差數(shù)列,并求數(shù)列{an}的通項;
(2)求數(shù)列{Sn}的前n項和Tn
(1)當(dāng)n=1時,s1=-a1+1-
1
2
a1=
1
4
…(1分),
n≥2時,由Sn-Sn-1=-an+an-1+
1
2n
,
2nan-2n-1an-1=
1
2
,
∴數(shù)列{2nan}為等差數(shù)列,…(3分)
2nan=2×a1+(n-1)×
1
2
,an=
n
2n+1
.…(6分)
(2)由(1)得Sn=1-
n+2
2n+1
,
∴Tn=n-(
3
22
+
4
23
+…+
n+2
2n+1
),①
1
2
Tn
=
1
2
n
-(
3
23
+
4
24
+…+
n+2
2n+2
),②
①-②得
1
2
Tn
=
1
2
n
-(
3
4
+
1
23
+
1
24
+…+
1
2n+1
-
n+2
2n+2

=
1
2
n
-
3
4
-
1
8
(1-
1
2n-1
)
1-
1
2
+
n+2
2n+2

=
1
2
n
-1+
1
2n+1
+
2n+4
2n+1
.…(9分)
∴Tn=n-2+
2n+5
2n
.…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}的前n項和Sn,a1=1,an+1=2Sn
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log3an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}的前n項和Sn=2n-1,數(shù)列{bn}是以a1為首項,公差為d(d≠0)的等差數(shù)列,且b1,b3,b9成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項公式
(2)若cn=an+bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列{an}的前n項和為Sn=10n-n2,則|a1|+|a2|+…+|a15|等于( 。
A.150B.135C.125D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列an中,a1=1,且點(an,an+1)(n∈N*)在函數(shù)f(x)=x+2的圖象上.
(Ⅰ)求數(shù)列an的通項公式;
(Ⅱ)在數(shù)列an中,依次抽取第3,4,6,…,2n-1+2,…項,組成新數(shù)列bn,試求數(shù)列bn的通項bn及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}是首項為1,公比為
1
3
的等比數(shù)列.
(1)求an的表達(dá)式;
(2)如果bn=(2n-1)an,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)令bn=an+2n,求數(shù)列{bn}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在數(shù)列{an}中,a1=1,an+2+(-1)nan=2,記Sn是數(shù)列{an}的前n項和,則S60=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列{an}滿足=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為“調(diào)和數(shù)列”.已知正項數(shù)列{}為“調(diào)和數(shù)列”,且b1+b2+…+b9=90,則b4·b6的最大值是(  )
A.10 B.100C.200 D.400

查看答案和解析>>

同步練習(xí)冊答案