精英家教網 > 高中數學 > 題目詳情
25、已知f(x)=|x-6|,以下程序框圖表示的是給定x的值,求其函數值的算法.請將該程序框圖補充完整.其中①處應填
x≤6?
,②處應填
y=x-6
分析:經分析,本框圖為條件結構,根據①的條件選擇“是““否“兩個分支進行執(zhí)行,再根據“是“時分析此時判斷框內的條件即可.
解答:解:根據題意,判斷框①的意圖為判斷絕對值符號
按照接下來兩個執(zhí)行框,“是“y=6-x
故此時x-6≤0
即①處應填:x≤6?
當“否“時,執(zhí)行②
此時x-6>0
∴②處應填y=x-6
故答案為:x≤6?;y=x-6.
點評:本題考查程序框圖,按照程序框圖的意圖進行分析,需要對程序框圖,條件結構有熟練的把握,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f (x)、g(x)都是定義在R上的函數,如果存在實數m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的函數.設f (x)=x2+x、g(x)=x+2,若h (x)為f (x)、g(x)在R上生成的一個偶函數,且h(1)=3,則函數h (x)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區(qū)間(-∞,0)上的單調性;
(Ⅲ)若k=
1
3
,設g(x)是函數f(x)在區(qū)間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區(qū)間[
1
2
,a]
上的值域為[
1
a
,1]
,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分別求f(x)、g(x)的定義域,并求f(x)•g(x)的值;(2)求f(x)的最小值并說明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在滿足下列條件的正數t,使得對于任意的正
數x,a、b、c都可以成為某個三角形三邊的長?若存在,則求出t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區(qū)間(-∞,0)上的單調性;
(Ⅲ)若數學公式,設g(x)是函數f(x)在區(qū)間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區(qū)間數學公式上的值域為數學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區(qū)間(-∞,0)上的單調性;
(Ⅲ)若,設g(x)是函數f(x)在區(qū)間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案