我們可以證明:已知sinθ=t(|t|≤1),則sin
θ
2
至多有4個不同的值.
(1)當t=
3
2
時,寫出sin
θ
2
的所有可能值;
(2)設實數(shù)t由等式log
1
2
2
(t+1)+a•log
1
2
(t+1)+b=0
確定,若sin
θ
2
總共有7個不同的值,求常數(shù)a、b的取值情況.
(1)由題意得:sinθ=
3
2
?cosθ=±
1
2
,
∴1-2sin2
θ
2
=
1
2
或1-2sin2
θ
2
=-
1
2

解得:sin
θ
2
=
3
2
sin
θ
2
=-
3
2
sin
θ
2
=
1
2
sin
θ
2
=-
1
2
;
(2)令u=log
1
2
(t+1)
,原方程變?yōu)閡2+au+b=0,
要使sin
θ
2
有七個不同的值,必須sinθ有兩個不同的值,且t1=0,t2∈(-1,0)∪(0,1),
從而b=0,a∈(-∞,0)∪(0,1),
此時,u1=log
1
2
(t1+1)=0
,u2=log
1
2
(t2+1)∈(-1,0)∪(0,+∞)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:044

如圖1-2-18(1),已知ABBD,CDBD,垂足分別為B、DADBC相交于點E,EFBD,垂足為F,我們可以證明+ =成立(不要求證明),若將圖1-2-18(1)中的垂直改為斜交,如圖1-2-18(2),ABCD,AD、BC相交于點E,過EEFAB,交BD于點F,則?

(1) + =還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.?

(2)請找出SABD、SBEDSBDC間的關(guān)系式,并給出證明.?

圖1-2-18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1-2-18(1),已知ABBD,CDBD,垂足分別為B、D,ADBC相交于點EEFBD,垂足為F,我們可以證明+ =成立(不要求證明),若將圖1-2-18(1)中的垂直改為斜交,如圖1-2-18(2),ABCDAD、BC相交于點E,過EEFAB,交BD于點F,則

(1) + =還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.

(2)請找出SABD、SBEDSBDC間的關(guān)系式,并給出證明.

圖1-2-18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1-2-17(1),已知AB⊥BD,CD⊥BD,垂足分別為B、D,AD和BC相交于點E,EF⊥BD,垂足為F,我們可以證明成立(不要求證明),若將圖1-2-17(1)中的垂直改為斜交,如圖1-2-17(2),AB∥CD,AD、BC相交于點E,過E作EF∥AB,交BD于點F,則:

(1)還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.(2)請找出S△ABD、S△BED和S△BDC間的關(guān)系式,并給出證明.

(1)                                             (2)

                            圖1-2-17

查看答案和解析>>

同步練習冊答案