精英家教網 > 高中數學 > 題目詳情
已知數列{an}為等差數列,Sn其前n項和,且a2=3a4-6,則S9等于( )
A.25
B.27
C.50
D.54
【答案】分析:由題意得a2=3a4-6,所以得a5=3.所以由等差數列的性質得S9=9a5=27.
解答:解:設數列{an}的首項為a1,公差為d,
因為a2=3a4-6,
所以a1+d=3(a1+d)-6,
所以a5=3.
所以S9=9a5=27.
故選B.
點評:解決此類題目的關鍵是熟悉等差數列的性質并且靈活利用性質解題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:在數列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2009=( 。
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:在數列{an}中,an>0且an≠1,若anan+1為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2013等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:在數列{an}中,an>0,且an≠1,若anan+1為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2011等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出“等和數列”的定義:從第二項開始,每一項與前一項的和都等于一個常數,這樣的數列叫做“等和數列”,這個常數叫做“公和”.已知數列{an}為等和數列,公和為
1
2
,且a2=1,則a2009=( 。
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數學 來源:2012--2013學年河南省高二上學期第一次考試數學試卷(解析版) 題型:選擇題

.定義:在數列{an}中,an>0且an≠1,若為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習冊答案