13.已知函數(shù)$y=\sqrt{2x-4}+lg(5-x)$的定義域為A,且B={x|x>4}.
(1)求集合A;
(2)求A∪(∁UB).

分析 (1)由函數(shù)的解析式求出定義域即可;
(2)根據(jù)補集與并集的定義寫出運算結果即可.
(寫成集合或區(qū)間形式均不扣分).

解答 解:(1)由函數(shù)$y=\sqrt{2x-4}+lg(5-x)$的定義域為A,
得$\left\{\begin{array}{l}2x-4≥0\\ 5-x>0\end{array}\right.$,解得2≤x<5;
∴集合A={x|2≤x<5};
(2)∵集合B={x|x>4},
∴∁UB={x|x≤4},
∴A∪(∁UB)={x|x<5}.
(寫成A=[2,5),A∪(CUB)=(-∞,5)均不扣分).

點評 本題考查了求函數(shù)的定義域和集合的定義與運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知拋物線x2=2y上三點A,B,C,且A(-2,2),AB⊥BC,當點B移動時,點C的橫坐標的取值范圍是(  )
A.(-∞,-6]∪[2,+∞)B.(-∞,-4)∪(4,+∞)C.[2,+∞)D.[-6,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某市為鼓勵居民節(jié)約用水,擬實行階梯水價,每人用水量中不超過w 立方米按2 元/立方米收費,超出w 立方米但不高于w+2 的部分按4 元/立方米收費,超出w+2 的部分按8 元/立方米收費,從該市隨機調查了10000 位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如圖所示頻率分布直方圖:
(1)如果w 為整數(shù),那么根據(jù)此次調查,為使40%以上居民在該月的用水價格為2元/立方米,w 至少定為多少?
(2)假設同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當w=2 時,估計該市居民該月的人均水費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.a(chǎn),b,c三個數(shù)成等比數(shù)列,其中a=7+4$\sqrt{3}$,c=7-4$\sqrt{3}$,則b=±1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在等差數(shù)列{an}中,若a1+a5+a9=$\frac{π}{2}$,則sin(a4+a6)=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若直線l經(jīng)過A(2,1),B(1,-m2)(m∈R)兩點,則直線l的傾斜角α的取值范圍是( 。
A.0≤α≤$\frac{π}{4}$B.$\frac{π}{2}$<α<πC.$\frac{π}{4}$≤α<$\frac{π}{2}$D.$\frac{π}{2}$<α≤$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖所示,在直三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,且斜邊AB=2$\sqrt{2}$,側棱AA1=4,點D為AB的中點,點E在線段AA1上,AE=λAA1(λ∈R).
(1)求證:不論λ取何值時,恒有CD⊥B1E;
(2)當λ為何值時,B1E⊥面CDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若方程f(x)=t恰有3個不同的實數(shù)根,則實數(shù)t的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.當x,y滿足條件$\left\{\begin{array}{l}{x≤y}\\{x≥0}\\{2x+y-3≤0}\end{array}\right.$時,目標函數(shù)z=3x+2y的最大值是( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習冊答案