已知函數(shù).
(1)當(dāng)時,求的極值;
(2)當(dāng)時,討論的單調(diào)性;
(3)若對任意的,,恒有成立,求實(shí)數(shù)的取值范圍.
(1)的極小值為,無極大值;
(2)①當(dāng)時,在和上是減函數(shù),在上是增函數(shù);
②當(dāng)時,在上是減函數(shù);
③當(dāng)時,在和上是減函數(shù),在上是增函數(shù)
(3).
解析試題分析:第一問,將代入中確定函數(shù)的解析式,對進(jìn)行求導(dǎo),判斷的單調(diào)性,確定在時,函數(shù)有極小值,但無極大值,在解題過程中,注意函數(shù)的定義域;第二問,對求導(dǎo),的根為和,所以要判斷函數(shù)的單調(diào)性,需對和的大小進(jìn)行3種情況的討論;第三問,由第二問可知,當(dāng)時,在為減函數(shù),所以為最大值,為最小值,所以的最大值可以求出來,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/07/5/1a3vy3.png" style="vertical-align:middle;" />對任意的恒成立,所以,將的最大值代入后,,又是一個恒成立,整理表達(dá)式,即對任意恒成立,所以再求即可.
試題解析:(1)當(dāng)時, 1分
由,解得. 2分
∴在上是減函數(shù),在上是增函數(shù). 3分
∴的極小值為,無極大值. 4分
(2). 5分
①當(dāng)時,在和上是減函數(shù),在上是增函數(shù); 6分
②當(dāng)時,在上是減函數(shù); 8分
③當(dāng)時,在和上是減函數(shù),在上是增函數(shù). 8分
(3)當(dāng)時,由(2)可知在上是減函數(shù),
∴. 9分
由對任意的恒成立,
∴ 10分
即對任意
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(e為自然對數(shù)的底數(shù))
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x2+aln(x+1)有兩個極值點(diǎn)x1,x2,且x1<x2.
(1)求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=時,判斷方程f(x)=-的實(shí)數(shù)根的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=lnx+ax(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x2-4x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1)若存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;
(2)若,求證:當(dāng)時,恒成立;
(3)利用(2)的結(jié)論證明:若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln ax- (a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間及最值;
(2)求證:對于任意正整數(shù)n,均有1+(e為自然對數(shù)的底數(shù));
(3)當(dāng)a=1時,是否存在過點(diǎn)(1,-1)的直線與函數(shù)y=f(x)的圖象相切?若存在,有多少條?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點(diǎn).
(1)求a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=a(x-5)2+6ln x,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
⑴當(dāng)時,①若的圖象與的圖象相切于點(diǎn),求及的值;
②在上有解,求的范圍;
⑵當(dāng)時,若在上恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com