平面直角坐標系xoy中,不等式x-1≤y≤
1-x2
所表示的區(qū)域的面積為
 
分析:先根據已知條件畫出對應圖象,分析出所求由哪幾部分組成,再分別求出其面積,最后求和即可得到結論.
解答:解:根據已知條件可得其對應的平面區(qū)域如圖:
由圖得:所求為
3
4
的圓以及一等腰三角形的面積之和.精英家教網
又因為:r=1,OA=OB=1,∠AOB=90°.
∴S=
4
r2+
1
2
×OB×OA•sin∠AOB=
3
4
π+
1
2

即所求平面區(qū)域的面積為:
4
+
1
2

故答案為:
4
+
1
2
點評:本題主要考查線性規(guī)劃的應用以及常見圖形面積的求法.考查計算能力.解決問題的關鍵在于分析出所求區(qū)域由哪幾部分組成.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,“方程
x2
k-1
+
y2
k-3
=1
表示焦點在x軸上的雙曲線”的充要條件是k∈
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,Pn(n,n2)(n∈N+)是拋物線y=x2上的點,△OPnPn+1的面積為Sn
(1)求Sn;
(2)化簡
1
S1
+
1
S2
+…+
1
Sn
;
(3)試證明S1+S2+…+Sn=
n(n+1)(n+2)
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系xOy中,A(4+2
3
,2),B(4,4)
,圓C是△OAB的外接圓.
(1)求圓C的方程;
(2)若過點(2,6)的直線l被圓C所截得的弦長為4
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,直線l的參數(shù)方程為:
x=-2+
3
5
t
y=2+
4
5
t
(t為參數(shù)),它與曲線C:(y-2)2-x2=1交于A,B兩點.
(1)求|AB|的長;
(2)在以O為極點,x軸的正半軸為極軸建立極坐標系,設點P的極坐標為(2
2
,
4
)
,求點P到線段AB中點M的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在平面直角坐標系xOy中,已知矩形ABCD的兩邊AB,CD分別落在x軸、y軸的正半軸上,且AB=2,AD=4,點A與坐標原點重合.現(xiàn)將矩形折疊,使點A落在線段DC上,若折痕所在的直線的斜率為k,試寫出折痕所在直線的方程及k的范圍.

查看答案和解析>>

同步練習冊答案