(2009•閘北區(qū)一模)若b1=1,對(duì)于任何n∈N*,都有bn>0,且nbn+12-2bn2-(2n-1)bn+1bn=0.則log2b2010=
2009
2009
分析:對(duì)所給的代數(shù)式進(jìn)行整理得到兩個(gè)因式的積的形式,得到數(shù)列是一個(gè)bn+1=2bn種關(guān)系,利用等比數(shù)列求得第2010項(xiàng)的表示式,最后利用對(duì)數(shù)的運(yùn)算性質(zhì),得到結(jié)果.
解答:解:nbn+12-2bn2-(2n-1)bn+1bn=0,
(nbn+1+bn)(bn+1-2bn)=0
∵bn>0,b n+1>0 則 nbn+1+bn 大于0
有 b n+1-2bn=0
bn+1=2bn
則bn=2 (n-1) b1=2(n-1)
b2010=2 2009={(210 10}10×29=(1024 1010×512=2 2009
則log2b2010=log22 2009=2009
故答案為:2009.
點(diǎn)評(píng):本題考查函數(shù)與數(shù)列的綜合題目,本題解題的關(guān)鍵是看出數(shù)列的特點(diǎn),針對(duì)于所給的數(shù)列的特點(diǎn)寫(xiě)出數(shù)列的通項(xiàng)公式,整理出結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閘北區(qū)一模)一校辦服裝廠花費(fèi)2萬(wàn)元購(gòu)買(mǎi)某品牌運(yùn)動(dòng)裝的生產(chǎn)與銷(xiāo)售權(quán).根據(jù)以往經(jīng)驗(yàn),每生產(chǎn)1百套這種品牌運(yùn)動(dòng)裝的成本為1萬(wàn)元,每生產(chǎn)x (百套)的銷(xiāo)售額R(x) (萬(wàn)元)滿(mǎn)足:R(x)=
-0.4x2+4.2x-0.8,0<x≤5
14.7-
9
x-3
,x>5

(1)該服裝廠生產(chǎn)750套此種品牌運(yùn)動(dòng)裝可獲得利潤(rùn)多少萬(wàn)元?
(2)該服裝廠生產(chǎn)多少套此種品牌運(yùn)動(dòng)裝利潤(rùn)最大?此時(shí),利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閘北區(qū)一模)若不等式|x-1|+|x+2|≥4a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為
(-∞,log43]
(-∞,log43]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閘北區(qū)一模)若f(x)=3x,則f-1(x)=
log3x
log3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閘北區(qū)一模)若指數(shù)函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(2,
14
)
,則f(-1)的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閘北區(qū)一模)設(shè)f(x)=2cos2x+
3
sin2x
g(x)=
1
2
f(x+
12
)+x+a
,其中a為非零實(shí)常數(shù).
(1)若f(x)=1-
3
,x∈[-
π
3
,
π
3
]
,求x;
(2)試討論函數(shù)g(x)在R上的奇偶性與單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案