7.若A(3,$\frac{2π}{3}$),B(4,$\frac{π}{6}$),則|AB|=____(注A、B兩點(diǎn)坐標(biāo)為極坐標(biāo))(  )
A.4B.5C.4$\sqrt{3}$D.2$\sqrt{3}$

分析 求出A,B的直角坐標(biāo),利用兩點(diǎn)間的距離公式,可得結(jié)論.

解答 解:A(3,$\frac{2π}{3}$),B(4,$\frac{π}{6}$),直角坐標(biāo)方程為A(-$\frac{3}{2}$,$\frac{3\sqrt{3}}{2}$),B(2$\sqrt{3}$,2),
∴|AB|=5,
故選B.

點(diǎn)評 本題考查極坐標(biāo)與直角坐標(biāo)的互化,考查兩點(diǎn)間的距離公式,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若f(x)=lnx+2x+x${\;}^{\frac{1}{2}}$-1,則不等式f(x)>f(2x-4)的解集為( 。
A.(-∞,4)B.(0,4)C.(2,4)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線(k+1)x+ky-1=0與兩坐標(biāo)軸圍成的三角形面積為Sk,則S1+S2+…+Sk=$\frac{k}{2(k+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a^x},x≥1}\end{array}}\right.$是R上的減函數(shù),那么a的取值范圍是$[\frac{1}{6},\frac{1}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=asinx-bcosx圖象的一條對稱軸為$x=\frac{π}{3}$,那么$\frac{a}$=(  )
A.$\sqrt{3}$B.1C.$-\sqrt{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.我國古代數(shù)學(xué)名著《張邱建算經(jīng)》有“分錢問題”:今有與人錢,初一人與三錢,次一人與四錢,次一人與五錢,以次與之,轉(zhuǎn)多一錢,與訖,還斂聚與均分之,人得一百錢,問人幾何?意思是:將錢分給若干人,第一人給3錢,第二人給4錢,第三人給5錢,以此類推,每人比前一人多給1錢,分完后,再把錢收回平均分給各人,結(jié)果每人分得100錢,問有多少人?則題中的人數(shù)是195.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.雙曲線方程為$\frac{x^2}{6}-\frac{y^2}{6}=1$,那么它的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤$\frac{π}{2}$,|φ2|≤$\frac{π}{2}$.
命題?①:若直線x=φ是函數(shù)f(x)和g(x)的對稱軸,則直線x=$\frac{1}{2}$kπ+φ(k∈Z)是函數(shù)g(x)的對稱軸;
命題?②:若點(diǎn)P(φ,0)是函數(shù)f(x)和g(x)的對稱中心,則點(diǎn)Q(${\frac{kπ}{4}$+φ,0)(k∈Z)是函數(shù)f(x)的中心對稱.( 。
A.命題①②??都正確B.命題①②??都不正確
C.命題?①正確,命題?②不正確D.命題?①不正確,命題?②正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x-2},(x<2)}\\{lo{g}_{3}({x}^{2}-1),(x≥2)}\end{array}\right.$,若f(a)=1,則a的值是(  )
A.1或2B.1C.2D.1或-2

查看答案和解析>>

同步練習(xí)冊答案