(本小題滿分12分)
、是常數(shù),關(guān)于的一元二次方程有實(shí)數(shù)解記為事件.
(1)若、表示投擲兩枚均勻骰子出現(xiàn)的點(diǎn)數(shù),求;
(2)若、,且,求.
(1)(2)
解析試題分析:(1)方程有實(shí)數(shù)解,,即
依題意,、、、、、,、、、、、,
所以,“投擲兩枚均勻骰子出現(xiàn)的點(diǎn)數(shù)”共有種結(jié)果………………2分
當(dāng)且僅當(dāng)“且、、”,或“且、”,或“且”時(shí),
不成立
所以滿足的結(jié)果有種 ………………5分,
從而 ………………6分.
(2)在平面直角坐標(biāo)系中,直線與圍成一個(gè)正方形
正方形邊長即直線與之間的距離為…………8分
正方形的面積
圓的面積為 ………………10分
所以 ………………12分.
考點(diǎn):古典概型概率與幾何概型概率
點(diǎn)評:古典概型概率需找到所有基本事件種數(shù)與滿足題意要求的基本事件種數(shù),然后求其比值,幾何概型概率一般找的是長度比面積比或體積比
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
從編號(hào)為1,2,3,4,5的五個(gè)形狀大小相同的球中,任取2個(gè)球,求:(1)取到的這2個(gè)球編號(hào)之和為5的概率;(2)取到的這2個(gè)球編號(hào)之和為奇數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了參加貴州省高中籃球比賽,某中學(xué)決定從四個(gè)籃球較強(qiáng)的班級的籃球隊(duì)員中選出人組成男子籃球隊(duì),代表該地區(qū)參賽,四個(gè)籃球較強(qiáng)的班級籃球隊(duì)員人數(shù)如下表:
班級 | 高三()班 | 高三()班 | 高二()班 | 高二()班 |
人數(shù) | 12 | 6 | 9 | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
甲,乙,丙三位學(xué)生獨(dú)立地解同一道題,甲做對的概率為,乙,丙做對的概率分別為, (>),且三位學(xué)生是否做對相互獨(dú)立.記為這三位學(xué)生中做對該題的人數(shù),其分布列為:
0 | 1 | 2 | 3 | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知箱中裝有4個(gè)白球和5個(gè)黑球,且規(guī)定:取出一個(gè)白球的2分,取出一個(gè)黑球的1分.現(xiàn)從該箱中任取(無放回,且每球取到的機(jī)會(huì)均等)3個(gè)球,記隨機(jī)變量X為取出3球所得分?jǐn)?shù)之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)電信公司進(jìn)行促銷活動(dòng),促銷方案為顧客消費(fèi)1000元,便可獲得獎(jiǎng)券一張,每張獎(jiǎng)券中獎(jiǎng)的概率為,中獎(jiǎng)后電信公司返還顧客現(xiàn)金1000元,小李購買一臺(tái)價(jià)格2400元的手機(jī),只能得2張獎(jiǎng)券,于是小李補(bǔ)償50元給同事購買一臺(tái)價(jià)格600元的小靈通(可以得到三張獎(jiǎng)券),小李抽獎(jiǎng)后實(shí)際支出為X(元).
(I)求X的分布列;(II)試說明小李出資50元增加1張獎(jiǎng)券是否劃算。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題14分)口袋內(nèi)有()個(gè)大小相同的球,其中有3個(gè)紅球和個(gè)白球.已知從
口袋中隨機(jī)取出一個(gè)球是紅球的概率是,且。若有放回地從口袋中連續(xù)地取四次球(每次只取一個(gè)球),在四次取球中恰好取到兩次紅球的概率大于。
(Ⅰ)求和;
(Ⅱ)不放回地從口袋中取球(每次只取一個(gè)球),取到白球時(shí)即停止取球,記為第一次取到白球時(shí)的取球次數(shù),求的分布列和期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知關(guān)于x的二次函數(shù).
(I)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)在區(qū)間上是增函數(shù)的概率;
(II)設(shè)點(diǎn)(a,b)是區(qū)域內(nèi)的一點(diǎn),求函數(shù)在區(qū)間上是增函數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com